
THE ELT LINUX DEVELOPMENT ENVIRONMENT

F. Pellegrin*, C. Rosenquist,
European Southern Observatory, Garching bei München, 85748, Germany

Abstract
The Extremely Large Telescope (ELT) [1] is a 39-metre

ground-based telescope being built by ESO [2]. It will be
the largest optical/near-infrared telescope in the world and
first light is foreseen for 2024.

The overall ELT Linux development environment will
be presented with an in-depth presentation of its core, the
waf [3] build system, and the customizations that ESO is
currently developing.

The ELT software development for telescopes and
instruments poses many challenges to cover the different
needs of such a complex system: a variety of technologies,
Java, C/C++ and Python as programming languages,
Qt5 [4] as the GUI toolkit, communication frameworks
such as OPCUA [5], DDS [6] and ZeroMQ [7], the
interaction with entities such as PLCs and real-time
hardware, and users, in-house and not, looking at new
usage patterns. All this optimized to be on time for the first
light.

To meet these requirements, a set of tools was selected
for the development toolkit. Its content ranges from an
IDE, to compilers, interpreters, analysis and debugging
tools for the various languages and operations. At the heart
of the toolkit lies the modern build framework waf: a
versatile tool written in Python selected due to its multiple
language support and high performance.

ELT SOFTWARE NEEDS AND
CHALLENGES

While choosing the software technologies that the new
ESO telescope will use, many factors were taken into
account, for example:

 Construction time and lifetime of the project;
from the project start to the first light almost a
decade will pass by and the operational time is
estimated to be at least 30 years. Technology-
wise these are very long timespans.

 Different scope; some parts of the new
telescope require very fast, real-time, either
computation hungry or low-level, operations
while others are used for post-processing or
data management where timing is not strict but
high level abstraction may be required.

 Different developer base; the ELT project will
be prepared with efforts of ESO engineers,
external contractors and consortia of scientific
institutes.

Given these factors a series of basic requirement are
therefore set on the software technologies to be used:

* fpellegr@eso.org

 Must be maintainable in the long term and as
accommodating as possible to new future
developments and requests

 The software tools available must be able to
cope with both low-level; real-time near
hardware, and high-level; user facing or data
abstraction situations depending on the scope
of the software component being developed.
Certainly it is difficult to find a single solution
for all these so different needs. This may mean
that a selection of complementary tools should
be offered.

 The software environment must take into
account a distributed and non-homogenous user
base, working at different premises and with
different knowledge bases and goals. Trying to
simplify common use cases should be an
important asset, while not limiting the
possibilities for advanced users.

The current plan is to develop most of the software, with
the exception of some PLC based development, on the
Linux operating system. Where specifically needed the
Linux real-time extensions [8] will be used and possibly
specific lower level network throughput optimization
libraries may be used to satisfy both timing and bandwidth
requirements.

The main programming languages selected for the
project are C/C++ chosen for its high performance and low
level capabilities, Java for its higher level of abstraction
and Python as a versatile scripting language that offers high
productivity. Language standards requirements had been
set to relatively new standards: C++11, Java 8 and Python
3.x are the current baseline.

The graphical user interface toolkit selected is Qt5,
giving the possibility to build advanced, portable and
performant interfaces in both C++ and Python.

Network communication will be IPv4 based and on a
higher level the aim is to support multiple application level
protocols to increase the expandability and interoperability
of the project with different communication patterns and
features that may be needed by a specific project feature
implementation. While a general abstraction layer is
planned to be developed to ease the integration, it is
planned that OPCUA, DDS, ZeroMQ as well as an internal
UDP based protocol will all be part of the project and
extensively used.

A big challenge for the development environment is to
try to make all these different technologies work together
and in a harmonious way. While it may be easier to find
optimized domain specific build systems, visual

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL05

Software Technology Evolution
THBPL05

1125

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

development environment and other tools for each
language, it is much harder to try to find one that fits all
and therefore optimizes the overall ELT development
experience as a whole.

THE DEVELOPMENT ENVIRONMENT
The selected base distribution for the Linux development

environment is CentOS [9]. CentOS is a community
maintained enterprise distribution based on the Red Hat
Enterprise Linux [10]. The usage of an enterprise focused
distribution guarantees solidly tested packages, long term
support and updates. The drawback of this choice is that
the latest version of technologies or packages may arrive
relatively late or have to be introduced separately, but these
problems can be addressed with usage of technologies like
containers that permit creation of customized isolated
environments that works on top of a stable base.

Compatibility with RPM [11] packaging format and a
vast userbase provide on the other side accessibility to
many additional packages or features, for example the
CERN [12] maintained real-time kernel extensions just to
mention one of the most important ones. Internal know-
how, due to use of same or similar distribution also for
other ESO projects, is also an important asset.

Relatively recent standards chosen for the programming
languages calls for relatively recent tools. On the C/C++
side the availability of the Red Hat Developer Toolset [13]
via the Software Collections [14] provides a complete and
updated toolset of the GNU Compiler Collection [15] and
other support tools, such as the GNU debugger [16],
profiling tools such as Valgrind [17] and gcov [18] and
system debugging tools such as strace [19] and
SystemTap [20]. For unit test creation the googletest [21]
framework was selected. Static analysis tools such for code
checking and syntax checking are currently Cppcheck [22]
and cpplint [23] but with great interest on the LLVM [24]
collection and specifically Clang [25] compiler tools for
code checking and formatting, as well as to the evolution
of this complete compiler package.

While Python 3.x is now present in most of the recent
distributions, even if coexisting with Python 2.7.x for
compatibility with some system applications, to guarantee
an updated and fully customized list of modules, ranging
from communication to big data management and from
scientific calculation to number crunching, the Anaconda
Python distribution [26] was selected. The usage of such a
distribution gives the possibility to prototype early and
share code with the current ESO Very Large
Telescope [27] software that adopted it recently as well.
Unit testing preparation is natively supported using the
unittest [28] module and users are allowed to write tests
also using the doctest [29] format, both being then
executed and managed by a test runner such as
Nosetests [30]. Code style and error checking is also
supported by the standard tool pylint [31].

Finally, for Java 8 support the OpenJDK [32]
implementation, now mature and as widely adopted as the
closed source counterparts, was selected. Unit testing
preparation is supported with the additional free software

framework TestNG [33] with the addition of Mockito [34].
Code style and error checking are done respectively using
Checkstyle [35] and FindBugs [36].

Another important decision to try to maximize the
productivity of the developers was which integrated
development environment, IDE, to propose and try to fully
support in the development environment. While each of the
languages used may have some specific very optimized
IDE, and it will still nevertheless come up to a matter of
personal preferences. The best choice given the range of
different languages, and as a consequence tools, was the
Eclipse Foundation product, Eclipse IDE [37]. This IDE,
with a couple of very well maintained plugins, supports all
the languages and related tools described.

The common cross language tool for inline
documentation was the Doxygen [38] package, supporting,
in worse case with minimal additional filters, all the
languages requested and producing standard HTML based
online documentation.

As the GUI toolkit the Qt5 framework was chosen over
a series of other candidates. The framework provides high
quality and performant graphical widgets that can be used
in control systems and other parts of the telescope. This
choice of course narrows the UI programming to C++ and
Python, as Java support is almost non-existent, and calls
for usage of specific Qt tools to manage code generation
and graphical resources used.

BUILD SYSTEMS
One big challenge given the three different languages

and the user interface framework, plus of course other
language independent resources such as configuration files
or media files, was to try to find the best build system
solution.

A first idea was based on having multiple build systems,
specific per language, and then somehow orchestrate their
execution. But this would make the environment quite
chaotic, require knowledge and maintenance of different
build scripts. Further it would preclude having a global
knowledge of dependencies and therefore the possibility
for full support for mixed language software modules,
reliable incremental builds and full parallelization of the
build tasks which was a requirement.

C/C++ projects are usually built with systems such as
GNU Make [39], possibly automatically created by a
system such as autotools [40] for the configuration stage,
or CMake [41], with some exceptions on more recent
systems such as Meson [42] or Bazel [43]. Qt5 based
projects usually start from the Qt specific qmake [44] tool.
The Java world is split with various solutions such as
Ant [45], Maven [46] and Gradle [47]. Python has
distutils [48] and setuptools [49]. Each of the tools listed is
mostly focused for that specific language, making it
difficult to apply to another language: so while building C
files with Ant or Java files with CMake is technically
possible, it is awkward and highly inefficient.

Other important requirements for the build system are:
 efficiency and parallelization,
 automatic dependencies management,

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL05

THBPL05
1126

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

 off-tree builds,
 ease of integration with present and future

external tools like code generators or test
runners,

 possibility to define a multiple input to multiple
output relations, an important problem with e.g.
GNU Make et al.,

 presence of a build command concept to allow
execution of independent build steps, e.g.
documentation generation or code linting and

 built in logging and debugging support.

THE WAF BUILD SYSTEM
The waf framework is an open source project started in

2005 whose goal is to abstract specific language needs,
managing everything as generic builds or support tasks,
keeping focus on portability and speed of execution.

Specifically, waf already has extensive support for the
three languages needed for the ELT, and in addition a long
list of other ones, support for the Qt5 framework
peculiarities, Eclipse IDE project generation, test unit
running and many other interesting features.

All the configuration files are written in Python, not a
custom domain specific language such as CMake, and
therefore all build scripts, extensions and customizations
can take advantage of having a full-fledged modern
programming language, extended with waf build
framework concepts, as the base. Being based on Python,
with support from versions 2.5.x to modern 3.6.x, it can run
on many different platforms that provide a Python
interpreter, most notably Linux, Windows and MacOS.

Dependencies are automatically tracked internally in the
project or supported easily from external sources using as
input the information supplied by the standard pkg-
config [50] configuration metainformation tool.

Build decisions are made by comparing hashes instead
of the traditional timestamp method that e.g. GNU make
uses. The hashes are created using inputs from input source
files, the resulting build environment, the Python build
functions and other variables. This means that it does not
suffer from timestamp related issues like clock skew on
NFS mounts and will not perform redundant build steps.
For example, the modification of a simple comment in a
C++ source file will recompile the source file but will not
re-link any target as the object file remains the same.

While waf is a less known tool and has a smaller user
base compared to other bigger names, it has still some very
important projects using it, for example:

 Samba [51], the standard Windows
interoperability suite for Linux

 RTEMS [52], an open-source real-time
operating system

 NS3 [53], discrete event network simulator
 Ardour [54], multiplatform DAW suite

† The core codebase of waf is roughly 5000 source lines of code
(SLOC), which roughly compares to the features of GNU Make which

 NTPsec [55], a secure implementation of the
NTP protocol

The waf build framework is also used by gaming
companies: projects where a lot of custom actions,
different languages and different pre-processing tools have
to interact and be coordinated to create the final result.

The waf developers community is quite active and
releases are done regularly.

To mitigate the risk associated with a smaller user base,
the project can be forked in worst case and maintained by
ESO as the code base is not very big†.

WAF USAGE AND EXAMPLES
The waf framework is configured using build scripts,

named wscripts, which are Python scripts in which classes
and functions are used to interact with the underlying waf
framework. Usually they can be more than one in a project,
nested on various subprojects and can be executed
recursively. Although it is important to note that waf build
scripts are not handled by respawning another instance of
waf but by executing the additional files and building up
the whole internal dependency structure, the recursive
Make problem [56] is not an issue.

All the phases of the project, from configuration, to
build, to testing, to installation, to distribution, are defined
in this file and any phase defined is then invoked on the
command line as a waf command that effectively executes
the operation.

Let’s try to introduce waf with a couple of concrete
examples for the practical ELT use cases.

VERSION='0.0.1'
APPNAME='cxx_test'

top = '.'
out = 'build'

def options(opt):
 opt.load('compiler_cxx')

def configure(conf):
 conf.load('compiler_cxx')
 conf.check(header_name='stdio.h', features='cxx')

def build(bld):
 bld.shlib(source='a.cpp', target='alib')
 bld.program(source='m.cpp', target='app', use='alib')
 bld.stlib(source='b.cpp', target='foo')

The simple mentioned example defines a C++ project

which builds a shared library (shlib), a program using it
(the use directive defines the dependency) and a static
library (stlib). In the configuration step external
dependencies for a C++ compiler and an additional header
are defined.

has about 30000 SLOC. This does not include some features provided
by waf where autotools is typically used instead.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL05

Software Technology Evolution
THBPL05

1127

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

With this small script and by invoking waf on the
command line with the configure, build, install and dist
commands we can effectively manage the whole
application lifecycle: the configuration will find on the
system the required dependencies of the project, the build
will execute the build steps when needed, the install will
copy the files to a predefined destination tree using
standard Unix conventions for file types that can be
otherwise overridden and the dist will create a
customizable package that can be easily delivered. Of
course each step can be greatly customized and additional
steps can be easily added writing Python code.

fede@eelt /tmp/a $ waf configure
Setting top to : /tmp/a
Setting out to : /tmp/a/build
Checking for 'g++' (C++ compiler) : /usr/bin/g++
Checking for header stdio.h : yes
'configure' finished successfully (0.116s)

fede@eelt /tmp/a $ waf build
Waf: Entering directory `/tmp/a/build'
[1/6] Compiling a.cpp
[2/6] Compiling m.cpp
[3/6] Compiling b.cpp
[4/6] Linking build/libalib.so
[5/6] Linking build/libfoo.a
[6/6] Linking build/app
Waf: Leaving directory `/tmp/a/build'
'build' finished successfully (0.288s)

In a similar fashion also defining a Java based project is

very easy, adding classic Java concepts to the recipe:

def configure(conf):
 conf.load('java')
 conf.check_java_class('java.io.FileOutputStream')
 conf.env.CLASSPATH_NNN = ['aaaa.jar']

def build(bld):
 bld(features = 'javac jar javadoc',
 srcdir = 'src/',
 outdir = 'src',
 compat = '1.6',
 sourcepath = ['src', 'sup'],
 classpath = ['.', '..'],
 basedir = 'src',
 destfile = 'foo.jar',
 use = 'NNN',
 javadoc_package = ['com.meow'],
 javadoc_output = 'javadoc',
)

In this case the configuration phase defined that the Java
compiler and tools will be searched, together with a check
on the existence of a specific class and definition of a
custom classpath. In the build phase directories to use are
defined, destination archive to generate, usage of the
custom classpath and how to create the documentation.

Going even higher level if we want to implement a Qt5
Python based application, with the support of automatic
Qt5 UI, user interface definition, files and resources
conversion, we would see something like the following
example:

def options(opt):
 opt.load('python pyqt5')

def configure(conf):
 conf.load('python pyqt5')
 conf.check_python_version((3,5,0))

def build(bld):
 bld(features="py pyqt5",
 source="src/test.py src/gui.ui",
 install_path="${PREFIX}/play/",
 install_from="src/")
 bld(features="pyqt5", source="sampleRes.qrc")

In this example Python and the Qt5 bindings, both
PyQt [57] and PySide [58] are supported and will be
scanned at configure phase, are requested along with a
minimal version of Python. In the build section a script and
a Qt UI file are defined to be processed and installed in
custom positions along with a Qt5 resource file, which will
be transformed by the appropriate tool into a Python class
whenever one of the referred resources will change in the
source tree.

New commands can be added to the framework by just
adding them as Python functions to the wscript:

def hello(ctx):
 print('hello world')

And since it is Python anything can be done depending
on the user’s needs.

Custom rules for target generation can be easily written:

def build(ctx):
 ctx(rule='tac ${SRC} > ${TGT}', source='foo.txt',
 target='bar.txt')

Or more generically an extension based rule:

TaskGen.declare_chain(
 name = 'sample1',
 rule = 'codegen ${SRC} ${TGT}',
 ext_in = '.in',
 ext_out = ['.a1', '.a2'],
)

In this case, when registered, any file with the .in
extension will be run through the codegen utility to
generate both .a1 and .a2 files.

From a developer point of view, it is also important to
notice that waf has a lot of debugging aides and tools built
in, giving the possibility with the zones to display filtered
information useful for bug hunting, for example the
internal tasks generated, dependencies or commands
executed.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL05

THBPL05
1128

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

THE WTOOLS EXTENSIONS
Although waf build scripts can be simple and readable

as shown in the previous section, an important aspect is
also to make build scripts easy to maintain, simple as
possible for developers that are unfamiliar with waf and to
allow new feature roll out without changing the build
scripts or waf itself. The ESO waf extension wtools was
created to permit this while still allowing developers to
make full use of waf if needed.

The simplest use of wtools reduces the build scripts to a
single line that specify the primary artefact and only those
attributes where the defaults are unsuitable. Currently the
following primary artefacts are supported:

 C/C++ program, shared and static library,
 Python program and package,
 Qt5 C++ or Python program and
 Java JAR packages.

For example, a C/C++ program may look like this:

from wtools.module import declare_cprogram
declare_cprogram(target=”foo”, use=”bar”)

By declaring the software module type, a C/C++

program in the example, the wtools extension will create
not just the primary artefact but also an associated unit test,
create the linting command, installation instructions and
more. It does this by populating the wscript with
definitions expected by waf using Python’s introspection
capabilities. It can be principally thought of as a
parameterized expansion macro that results in definitions
for the different waf commands in the wscript.

By also levering strong conventions on how software
modules are structured wtools knows where to find source
files, headers, unit tests etc. using ant-like pattern
matching. The result is something akin to the following for
the build command:

def build(ctx):
 bld.auto_cprogram(target=”foo”, use=”bar”)

The auto_cprogram symbol is a method registered by

wtools in waf which when invoked takes care of creating
the standard artefacts as required, including the C/C++
program primary artefact and secondary artefacts like unit
tests or Qt resources.

Not all use cases can be foreseen or supported in wtools
so by using this method indirection allows the developer to
provide their own implementation of the build command to
customize the behaviour while still make use of the
automatic artefact creation.

For example, if the same sources need to be used to build
two flavours of a program using different compilation flags
the developer can still use the wtools-registered method
auto_cprogram to leverage the automatic artefact
declarations while allow room for attribute customizations:

from wtools.module import declare_custom

def build(ctx):
 ctx.auto_cprogram(target=“targetA”, name=”targetA”,
 defines=”A=1”)
 ctx.auto_cprogram(target=“targetB”, name=”targetB”,
 defines=”B=1”)

declare_custom(provides=[“targetA”, “targetB”],
depends=[])

By declaring the module to be custom with

declare_custom, the developer can still inform wtools
about what the software module provides and depends on.
Using this information wtools automatically finds
unresolved dependencies in the project during the
configuration phase and tries to resolve them on the
system. For the moment dependency resolution with pkg-
config is supported, but more will likely follow.

If necessary, the developer can still opt out of wtools
completely and write their own wscripts. The disadvantage
of this is that this wscript would then have to be maintained
by hand to e.g. make use of new features or update to
support newer versions of waf. These are otherwise things
that can be implemented centrally in wtools and
automatically rolled out to all other modules.

ADOPTION AND FUTURE WORK
A first version of the ELT Linux development

environment described is already now in use by early
adopters: developers, ESO personnel and external
companies. The feedback from real usage is now a very
important asset to help improve and extend it constantly.

Similarly, the development environment is also already
in use to execute automatic tasks and quality reporting on
the continuous integration system, based on the
Jenkins [59] open source automation server, and used as a
solid base for the ELT testing framework to execute in. All
these components together will constitute the ECM, the
ELT Control Model, a small scale but representative subset
of the ELT telescope control system that will give the
possibility to test and validate the software at ESO site in
Europe before it is installed on the final setup.

The current feeling is that further requested
improvements to the build framework can be, compared for
example with the previous VLT experience based on GNU
Make, added and managed in a much easier and flexible
way, thanks to the versatility of the powerful Python
language and the infrastructure offered by the waf package
and wtools layer. The centralized management of features
given by wtools makes it easier to roll out improvements
without the need of modification on the user level. The
debugging and study of malfunctions with the integrated
facilities is notably easier than the bare-bone facilities
provided by GNU Make.

Nevertheless, with the full-fledged adoption of the
environment, when all the software activities will be on-
going, we realize that a committed team has to be allocated
to follow its evolution and, especially to help new users to
adopt it, being a very different technology from the ones
previously used. In this direction it is important to mention

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL05

Software Technology Evolution
THBPL05

1129

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

that appropriate documentation, planned internal
presentations and a growing list of ready to run examples
are top priorities.

One of the future important decisions currently being
under investigation and prototyping, for which the ELT
Linux development environment will have to be adapted,
is to deal with the deployment of the prepared artefacts.
This includes technologies related to containers and
container orchestration, generation of independent
packages that can be easily deployed and distributed
avoiding dependency hell situations and solutions for
process management and supervision.

REFERENCES
[1] Extremely Large Telescope,

https://www.eso.org/public/teles-instr/elt
[2] European Southern Observatory, https://www.eso.org
[3] waf, https://waf.io
[4] Qt, https://www.qt.io
[5] OPC-UA, https://opcfoundation.org/about/opc-

technologies/opc-ua
[6] DDS, http://portals.omg.org/dds
[7] ZeroMQ, http://zeromq.org
[8] Real-Time Linux, https://rt.wiki.kernel.org
[9] CentOS, https://www.centos.org

[10] Red Hat Enterprise Linux,
https://www.redhat.com/it/technologies/linux
-platforms/enterprise-linux

[11] RPM, http://rpm.org
[12] CERN, https://home.cern
[13] Red Hat Developer Toolset,

https://developers.redhat.com/products/devel
opertoolset/overview

[14] Software Collections,
https://www.softwarecollections.org

[15] GNU Compiler Collection, https://gcc.gnu.org
[16] GNU Debugger, http://www.gnu.org/software/gdb
[17] valgrind, http://valgrind.org
[18] gcov,

https://gcc.gnu.org/onlinedocs/gcc/Gcov-
Intro.html

[19] strace, https://strace.io
[20] SystemTap, https://sourceware.org/systemtap
[21] googletest,

https://github.com/google/googletest
[22] Cppcheck, http://cppcheck.sourceforge.net
[23] cpplint, https://github.com/cpplint/cpplint

[24] LLVM, https://llvm.org
[25] Clang, https://clang.llvm.org
[26] Anaconda, https://docs.continuum.io/anaconda
[27] ESO Very Large Telescope ,

http://www.eso.org/public/teles-
instr/paranal-observatory/vlt

[28] unittest,
https://docs.python.org/3/library/unittest.h
tml

[29] doctest,
https://docs.python.org/3/library/doctest.ht
ml

[30] Nosetests, https://nose.readthedocs.io
[31] pylint, https://www.pylint.org
[32] OpenJDK, http://openjdk.java.net
[33] TestNG, http://testng.org
[34] Mockito, http://site.mockito.org
[35] Checkstyle, http://checkstyle.sourceforge.net
[36] FindBugs, http://findbugs.sourceforge.net
[37] Eclipse, https://eclipse.org
[38] Doxygen, http://www.stack.nl/~dimitri/doxygen
[39] GNU Make, https://www.gnu.org/software/make
[40] Autotools, http://www.gnu.org/software/automake
[41] CMake, https://cmake.org
[42] Meson, http://mesonbuild.com
[43] Bazel, https://bazel.build
[44] qmake, http://doc.qt.io/qt-5/qmake-

manual.html
[45] Apache Ant, https://ant.apache.org
[46] Apache Maven, https://maven.apache.org
[47] Gradle, https://gradle.org
[48] distutils, https://docs.python.org/3/distutils
[49] setuptools, https://github.com/pypa/setuptools
[50] pkg-config,

https://www.freedesktop.org/wiki/Software/pk
g-config

[51] Samba, https://www.samba.org
[52] RTEMS, https://www.rtems.org
[53] NS3, https://www.nsnam.org
[54] Ardour, https://ardour.org
[55] ntpsec, https://www.ntpsec.org
[56] P.A. Miller, “Recursive Make Considered Harmful’’,

AUUGN Journal of AUUG Inc., vol. 19. No. 1, pp. 14-25,
1998.

[57] PyQt,
https://riverbankcomputing.com/software/pyqt

[58] PySide, https://wiki.qt.io/PySide
[59] Jenkins, https://jenkins.io/

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THBPL05

THBPL05
1130

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

