
ECMC, THE OPEN SOURCE MOTION CONTROL PACKAGE FOR 
EtherCAT HARDWARE AT THE ESS 

Abstract 
The open standard EtherCAT is well established as a 

real-time fieldbus for largely distributed and synchronised 
systems. Using EtherCAT hardware for digital and ana-
logue I/Os, Diamond Light Source (DLS) and the Paul 
Scherrer Institut (PSI) introduced open source solutions 
for the bus master in scientific installations. The European 
Spallation Source (ESS) decided to use EtherCAT sys-
tems for mid-performance data acquisition and motion 
control on accelerator applications. 

In this contribution we present the motion control soft-
ware package ECMC developed at the ESS using the 
open source Etherlab master to control the EtherCAT bus. 
The motion control interfaces to the EPICS Motor Record 
with a model 3 driver. It supports functionalities like 
positioning, jogging, homing and soft/hard limits. Ad-
vanced features of the ECMC package include full servo-
loop feedback, a scripting language for custom synchroni-
sation of different axes, virtual axes, externally triggered 
position capture and interlocking. We will illustrate the 
synchronisation feature on the example of a 2-axis slit set 
and present different CPU hardware platforms and Ether-
CAT slave modules for the ECMC framework. 

INTRODUCTION 
Since it’s introduction in 2003, the field bus EtherCAT 

established itself as an industrial standard for distributed 
and synchronised applications. Beckhoff Automation 
GmbH [1] established the bus on the market, and hun-
dreds of manufacturers followed, coordinated in the 
EtherCAT Technology Group [2]. The group is collecting 
all users and suppliers of EtherCAT hardware and applica-
tions and maintains the open bus standard. 

 EtherCAT Field Bus 
EtherCAT is a real time field bus based on Ethernet in-

frastructure (100 Mbit/s, full-duplex). It uses a one mas-
ter/n-slaves model with standard CAT5 connections in 
line, star or ring topologies. It supports synchronised 
distributed clocks (DC) in all bus components with a 
synchronisation error <100ns and bus cycle times <50μs. 

The bus master is able to run on any computer hard-
ware with Ethernet ports. Beckhoffs Windows-based 
TwinCAT [1] is the most common commercial software 
solution. Since the bus master is not restricted to dedicat-
ed hardware virtually any hardware/OS combination can 
be used to implement the bus master functionality.  

Slaves are running on dedicated hardware and are 
available as motor drives, I/O-terminals, sensors, actors or 
even as complete robotic systems. 

ESS Controls Strategy 
EtherCAT systems are part of the chosen controls 

hardware strategy at ESS [3, 4] being the medium per-
formance platform for data acquisition and control as 
shown in Fig. 1. 

 
Figure 1: ESS hardware performance levels [5]. 

A particularly advantageous setup for the accelerator 
applications at ESS is the combination of a bus master for 
the high level electronic front-end platform, an EtherCAT 
master and the associated EPICS IOCs on the same hard-
ware (e.g. a μTCA-CPU). As all ESS IOC’s will run on 
Linux OS, an Open Source EtherCAT master is needed 
here. 

Previous Work at Research Facilities 
Currently several open source EtherCAT master are 

available in the community. The most popular is the Open 
Source EtherCAT Master introduced by the company IgH 
as part of their EtherLab package [6]. The Diamond Light 
Source (DLS) used this master in a project aiming to 
replace the first generation VME-based DAQ system to 
an EtherCAT based distributed digital and analog I/O and 
control system [7, 8].  

More recently also the Paul Scherrer Institut (PSI) took 
an approach with the same bus master for simplified 
hardware configuration and higher bus cycle rates [9]. 
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ECMC FRAMEWORK 
Open source motion control has been considered at ESS 

for accelerator motion control applications. A first version 
with basic functionalities and connectivities has been 
developed [10]. Following the requirements from the 
different accelerator use-cases at ESS (beam instrumenta-
tion, cavity tuning, etc.) a more comprehensive frame-
work was decided. EtherCAT Motion Control (ECMC) is 
now a fully functional open source motion control 
framework integrated into the ESS EPICS environment. 
The software package includes functionalities from sim-
ple point-to-point positioning to advanced axis synchroni-
sation.  

Functionalities 

 
Motion (with Motor Record Support): 

 Positioning (absolute, relative) 
 Constant speed 
 Referencing sequences 
 Soft/hard limits 

Motion (extension to Motor Record) 
 Motion interlocks 
 Triggering/latching positions 
 Synchronisation (to axis or external source) 

General: 
 Data acquisition (analogue <100kHz, digital 

<1Mhz) 
 General I/O and low level control 
 Latching of meta data 

 

Software Architecture (Fig. 2) 

control or data acquisition. Typically the ECMC executes 
an “Axis”-object for each configured axis and links to an 
EPICS motor record but can also connected to other types 
of EPICS records. 

 Figure 2: Software architecture. 

Axis Class 
The axis class implements all motion control related al-

gorithms. One axis class object needs to be configured for 
each motion axis in the system. This is made through 
ASCII commands sent to the ECMC command parser 
thread. Two types of axis objects can be configured, a 
normal axis (with actual hardware attached) or a virtual 
axis. A normal axis object links to five objects: Encoder, 
trajectory, PID-controller, monitor and drive object (Fig. 
3). A virtual axis links to the same objects except it lacks 
the PID-controller and drive object. 

Encoder object The encoder object handles all logic 
related to an encoder. The relevant position data is linked 
to this object. It could be from an encoder, analogue input 
value or any other input data in the EtherCAT process 
image. The encoder object can be configured to handle 
scalings, converting the EtherCAT values to engineering 
units.  Over/underflow of position data can be handled 
resulting in a functionality mimicking a multi turn encod-
er. The result will then correspond to the reading of the 
actual axis position. 

ECMC focuses on motion functionalities but covers al-
so some other, more general control features. Basic mo-
tion functionalities are compatible with the EPICS Motor 
Record [11], whereas advanced features like axis syn-
chronisation and motion interlocks require an extension of 
the record. 

The ECMC framework is fully integrated into the ESS 
EPICS Environment (EEE). It consists of a communica-
tion thread including a command parser and a real-time 
control thread executing within the EPCIS process. 
Communication between EPICS records and ECMC 
threads are realised through the asynDriver [12]. Specifi-
cally, the motor record communication is based on the 
Model 3 Motor Driver. The communication thread exe-
cutes a command parser used for configuration purpose 
and also non-time-critical communication to EPICS rec-
ords. 

The real-time thread reads/writes data from/to the 
EtherCAT process image, provided by the open source 
Etherlab master [6], ensuring it is up to date. The Ether-
CAT data then can be used for motion control, general 

For data acquisition and control, the real-time thread 
can pass EtherCAT data, single values or arrays directly to 
EPICS records using I/O interrupt with optional configu-
rable sample rate. The maximum update rate of EPICS 
records is the same as the sample rate of the real-time 
thread, default 1kHz, resulting in that all updates of 
EtherCAT data will be accessible from EPICS records. 
ECMC also supports oversampling EtherCAT slaves, 
which deliver arrays of data for each bus cycle. These 
arrays can be made accessible from EPICS as waveform 
records. 

All general functionalities can be performed from with-
in the EPICS environment. A subset of these functions 
like latching or triggering of actions can be as well con-
figured directly in the ECMC layer. 
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Trajectory object This object implements a trape-
zoidal trajectory generator calculating position set-points 
for absolute positioning, relative positioning and constant 
velocity. From the generated trajectory, a velocity fee-
forward value is also generated. The position set-point 
and the feed-forward velocity is updated with the same 
sample rate as the real-time thread. 

 
Figure 3: Overview axis class. 

Drive object The drive object handles all logic relat-
ed to a drive. Currently, three types of drives are support-
ed: A DS402 compliant drive [13], a simple drive for 
stepper or DC-motors and a drive for generic step-
direction or analogue output. 
Depending on the type of drive different links to the 
EtherCAT process image are needed. For the DS402 
compliant drive, normally a servo drive, the velocity set-
point and the drive control and status words are needed. 
The drive object then handles the DS402 state machine 
for enabling the drive amplifier. For a simple stepper 
motor drive, just the velocity set-point, amplifier enable 
command and amplifier enabled feedback needs to be 
linked. The same links are established for the third type, 
typically a non-EtherCAT drive interfaced with pulse-
direction or pure analogue interface. The velocity set-
point value can be scaled to engineering units.  

PID-controller object The controller object receives 
the actual position from the encoder object and the set-
point position from the trajectory object as input to the 
PID algorithm. The output of the control process is sent as 
a velocity set-point to the drive object. Typical object 
configurations are controller parameters like gain, integral 
gain, derivative gain and maximum output.  

Monitor object This object implements evaluation of 
digital inputs for limit switches, reference switches or 
interlocks as well as monitoring of processed data like 
position lags, “at target” position or over speed. It needs 

to be linked to a corresponding input or to other data in 
the EtherCAT process image.  

If a limit switch is actuated the trajectory generator will 
initiate a ramp down in speed based on the deceleration 
setting. For referencing purposes several homing se-
quences are implemented in ECMC, using the limit 
switch, an optional reference switch and/or the encoder 
data to reference the actual position of the axis.  

The generic interlock input can be used when interfac-
ing other systems to ensure no motion of the axis is per-
formed when the corresponding bit in the EtherCAT pro-
cess image is zero.  

Position lag monitoring continuously monitors the dif-
ference between encoder actual position and the position 
set-point calculated by the trajectory generator. If the 
difference is bigger than a specified tolerance value the 
motion will be stopped. This can be useful to identify 
mechanical issues and also make commissioning safer. 

“At target” monitoring continuously monitors if the ac-
tual encoder position is within a certain tolerance from the 
target position. Over speed monitoring ensures the axis 
will not move faster than a configurable maximum speed. 

Control Loop Execution 
In an EtherCAT system the cascaded control loops (cur-

rent, velocity, position) can be executed at different loca-
tions divided between the central controller and the dis-
tributed drive (EtherCAT slave). The simplest approach is 
to execute all three control loops at one place in the dis-
tributed drive resulting in reduced load on the controller 
CPU and on the bus. However, this setup is not optimal if 
you need to synchronize axes since the position control 
loop then would be distributed to different drives. Another 
drawback of distributing all the control loops is that the 
encoder feedback needs to be connected to the drive di-
rectly resulting in reduced flexibility.  

 
Figure 4: Velocity control mode. 
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A more generic setup can be achieved by centralising 
the position loop in the bus master, but keeping the ve-
locity and current loop distributed in the drive (Fig. 4). A 
centralized position loop facilitates synchronisation be-
tween axes and increases flexibility in connecting the 
encoder feedback to any EtherCAT slave in the network. 
This control mode, Cyclic Synchronous Velocity (CSV), 
is applied by default by ECMC resulting in a cyclic writ-
ing of velocity set-points to the drives. 

Synchronisation 

Certain variables are accessible in the synchronisation 
expressions: 
 setPosx  trajectory position setpoint of axis x 
 actPosx  encoder actual position of axis x 
 enx   amplifier enable command of axis x 
 ilx   interlock (allow motion) of axis x 

All variables can both be read and written to in the ex-
pressions. Expressions are evaluated in the real-time 
thread at a default frequency of 1kHz ensuring true syn-
chronisation. A few examples are listed below: 

Slaving Axis 2 will follow actual position of axis 1:  
setPos2:=actPos1; 

Simple synchronisation Axis 2 will get same set-
point position as axis 1:  

setPos2:=setPos1; 

Gearing Axis 2 will gear with a factor 0.5 to axis 1:  
setPos2:=0.5*setPos1; 

Static phasing Axis 2 will be phase offset 10 units 
compared to axis 1:  

setPos2:=setPos1+10; 

Dynamic phasing Axis 3 will be phase offset the set-
point of axis 2 compared to axis 1:  

setPos3:=setPos1+setPos2; 

Advanced synchronisation Axis 1 will get a set-
point calculated as the sinus of the sum of the set-point of 
axis 2 and the actual position of axis 3 with an amplitude 
of 10:  

setPos1:=10*sin(setPos2+actPos3); 

Interlocks Axis 1 is allowed to move if axis 2 and 
axis 5 is allowed to move and the actual position of axis 4 
is bigger than actual position of axis 3: 

il1:=il2 and il5 and actPos4>actPos3; 

Amplifier enable Axis 2 will receive an enable am-
plifier command if axis 1 receives an enable amplifier 
command: 

en2:=en1;   
 

Application example slit system Consider a 2-axis 
slit system like in Fig 5. In this case, the slit centre posi-
tion and gap (opening) needs to be controlled instead of 
the actual position of the physical axes moving the two 
blades. These two axes need to be defined as virtual axes 
since they have no hardware connected. In addition to the 
two virtual axes we also need to define two normal axes 
corresponding to the real blade positions. 

 
Figure 5: 2-blades slit system. 

The synchronization expressions describing the rela-
tions between the virtual and the normal axes can be de-
fined as: 

setPos3:=setPos1-setPos2/2; 
setPos4:=setPos1+setPos2/2; 
actPos1:=(actPos3+actPos4)/2; 
actPos2:=(actPos4-actPos3); 

Finally, the amplifier enable commands needs to be 
configured so that both axis 3 and axis 4 are enabled if 
axis 1 or 2 is enabled: 

en3:=en1 or en2;  
en4:=en1 or en2; 

Virtual axes synchronisation If yet another virtual 
axis, axis 5, is configured simulating a master timing 
system, the slit system centre position and gap can be 
synchronized to each other by adding four more expres-
sions. In our example the slit system centre position will 
be controlled to a sinusoidal with a frequency related to 
the timing system actual position. The slit system opening 
will be controlled to a cosines at a slightly lower frequen-
cy compared to the slit centre position: 

setPos1:=10*sin(actPos5); 
setPos2:=5*cos(actPos5/1.5); 

The amplifier enable of axis 1 and axis 2 can be linked 
to the enable of the simulated master timing system axis:  

en1:=en5;  
en2:=en5;  

In total, this example includes five EPICS Motor Rec-
ords extended with expressions defining the synchronisa-
tion behaviour. Figure 6 shows the resulting motion when 
enabling and running the simulated master system, axis 5, 
at a constant velocity. The equation-system defined by the 
expressions is evaluated in the real-time loop in 1 kHz.  

Synchronisations between axes are configured by ex-
pressions (equations) [14]. These expressions can be 
configured and updated directly from EPICS records at 
runtime and can be seen as extensions to the Motor Rec-
ord. This approach allows each axis to be controlled by a 
Motor Record and still be synchronized to other axes. 
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Figure 6: Movements of two virtual (#1, #2) and two real 
axes (#3, #4) in a synchronised slit setup sampled in 10Hz. 

HARDWARE SETUP 
A typical ECMC hardware setup consists of a CPU in a 

standard computer with the EtherCAT master and the 
EPICS IOC running and an EtherCAT network with 
commercially available bus slaves on dedicated hardware 
to connect sensors and actors.  

Hardware for EPICS, ECMC and Bus Master 
For development and test purposes ECMC, bus master 

and EPICS have been implemented so far on industrial 
DIN rail and 19”-1HU-computers with a CentOS 7 Linux 
distribution. Ultimately it needs to be transferred to a 
μTCA CPU in order to combine beam instrumentation, 
motion control and EPICS-IOC functionality in one place. 

Motion Control Terminals as EtherCAT Slaves 
A number of commercially available EtherCAT slaves 

has been evaluated and integrated into ECMC: 
 Beckhoff terminals for servo and stepper motors 

< 3.5Arms [1]. 
 Beckhoff terminals for incremental and absolute 

encoders and resolver. 
 Beckhoff terminals for digital and analog I/Os. 
 Kuhnke terminals for servo and stepper motors  

< 5Arms. [15]. 
 Technosoft drives for high power stepper motors  

< 14Arms [16]. 
Hardware evaluation is on-going and a comprehensive 

list of integrated and tested CPU platforms and EtherCAT 
slaves will be published in the future. 

CONCLUSIONS 
A motion control framework for use within the ESS 

EPICS Environment has been developed. The framework 
utilises the open source EtherCAT master from IgH 
Etherlab to configure and communicate with EtherCAT 
hardware. Basic motion functionalities as well as more 
advanced have been implemented. The framework can 
also be utilised for general control and data acquisition. 

Next steps in the project at ESS will be to apply this 
framework to ESS accelerator motion control use cases 
and to continue the evaluation of commercial hardware 
for adding them to the framework. 
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