
ECMC, THE OPEN SOURCE MOTION CONTROL PACKAGE FOR
EtherCAT HARDWARE AT THE ESS

Abstract
The open standard EtherCAT is well established as a

real-time fieldbus for largely distributed and synchronised
systems. Using EtherCAT hardware for digital and ana-
logue I/Os, Diamond Light Source (DLS) and the Paul
Scherrer Institut (PSI) introduced open source solutions
for the bus master in scientific installations. The European
Spallation Source (ESS) decided to use EtherCAT sys-
tems for mid-performance data acquisition and motion
control on accelerator applications.

In this contribution we present the motion control soft-
ware package ECMC developed at the ESS using the
open source Etherlab master to control the EtherCAT bus.
The motion control interfaces to the EPICS Motor Record
with a model 3 driver. It supports functionalities like
positioning, jogging, homing and soft/hard limits. Ad-
vanced features of the ECMC package include full servo-
loop feedback, a scripting language for custom synchroni-
sation of different axes, virtual axes, externally triggered
position capture and interlocking. We will illustrate the
synchronisation feature on the example of a 2-axis slit set
and present different CPU hardware platforms and Ether-
CAT slave modules for the ECMC framework.

INTRODUCTION
Since it’s introduction in 2003, the field bus EtherCAT

established itself as an industrial standard for distributed
and synchronised applications. Beckhoff Automation
GmbH [1] established the bus on the market, and hun-
dreds of manufacturers followed, coordinated in the
EtherCAT Technology Group [2]. The group is collecting
all users and suppliers of EtherCAT hardware and applica-
tions and maintains the open bus standard.

 EtherCAT Field Bus
EtherCAT is a real time field bus based on Ethernet in-

frastructure (100 Mbit/s, full-duplex). It uses a one mas-
ter/n-slaves model with standard CAT5 connections in
line, star or ring topologies. It supports synchronised
distributed clocks (DC) in all bus components with a
synchronisation error <100ns and bus cycle times <50μs.

The bus master is able to run on any computer hard-
ware with Ethernet ports. Beckhoffs Windows-based
TwinCAT [1] is the most common commercial software
solution. Since the bus master is not restricted to dedicat-
ed hardware virtually any hardware/OS combination can
be used to implement the bus master functionality.

Slaves are running on dedicated hardware and are
available as motor drives, I/O-terminals, sensors, actors or
even as complete robotic systems.

ESS Controls Strategy
EtherCAT systems are part of the chosen controls

hardware strategy at ESS [3, 4] being the medium per-
formance platform for data acquisition and control as
shown in Fig. 1.

Figure 1: ESS hardware performance levels [5].

A particularly advantageous setup for the accelerator
applications at ESS is the combination of a bus master for
the high level electronic front-end platform, an EtherCAT
master and the associated EPICS IOCs on the same hard-
ware (e.g. a μTCA-CPU). As all ESS IOC’s will run on
Linux OS, an Open Source EtherCAT master is needed
here.

Previous Work at Research Facilities
Currently several open source EtherCAT master are

available in the community. The most popular is the Open
Source EtherCAT Master introduced by the company IgH
as part of their EtherLab package [6]. The Diamond Light
Source (DLS) used this master in a project aiming to
replace the first generation VME-based DAQ system to
an EtherCAT based distributed digital and analog I/O and
control system [7, 8].

More recently also the Paul Scherrer Institut (PSI) took
an approach with the same bus master for simplified
hardware configuration and higher bus cycle rates [9].

† thomas.gahl@esss.se

 T.Gahl†, D. Brodrick, T. Bögershausen, O. Kirstein, T. Korhonen, D. Piso, A. Sandström
European Spallation Source ERIC, Lund, Sweden

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOCPL05

Integrating Diverse Systems
MOCPL05

71

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

ECMC FRAMEWORK
Open source motion control has been considered at ESS

for accelerator motion control applications. A first version
with basic functionalities and connectivities has been
developed [10]. Following the requirements from the
different accelerator use-cases at ESS (beam instrumenta-
tion, cavity tuning, etc.) a more comprehensive frame-
work was decided. EtherCAT Motion Control (ECMC) is
now a fully functional open source motion control
framework integrated into the ESS EPICS environment.
The software package includes functionalities from sim-
ple point-to-point positioning to advanced axis synchroni-
sation.

Functionalities

Motion (with Motor Record Support):

 Positioning (absolute, relative)
 Constant speed
 Referencing sequences
 Soft/hard limits

Motion (extension to Motor Record)
 Motion interlocks
 Triggering/latching positions
 Synchronisation (to axis or external source)

General:
 Data acquisition (analogue <100kHz, digital

<1Mhz)
 General I/O and low level control
 Latching of meta data

Software Architecture (Fig. 2)

control or data acquisition. Typically the ECMC executes
an “Axis”-object for each configured axis and links to an
EPICS motor record but can also connected to other types
of EPICS records.

 Figure 2: Software architecture.

Axis Class
The axis class implements all motion control related al-

gorithms. One axis class object needs to be configured for
each motion axis in the system. This is made through
ASCII commands sent to the ECMC command parser
thread. Two types of axis objects can be configured, a
normal axis (with actual hardware attached) or a virtual
axis. A normal axis object links to five objects: Encoder,
trajectory, PID-controller, monitor and drive object (Fig.
3). A virtual axis links to the same objects except it lacks
the PID-controller and drive object.

Encoder object The encoder object handles all logic
related to an encoder. The relevant position data is linked
to this object. It could be from an encoder, analogue input
value or any other input data in the EtherCAT process
image. The encoder object can be configured to handle
scalings, converting the EtherCAT values to engineering
units. Over/underflow of position data can be handled
resulting in a functionality mimicking a multi turn encod-
er. The result will then correspond to the reading of the
actual axis position.

ECMC focuses on motion functionalities but covers al-
so some other, more general control features. Basic mo-
tion functionalities are compatible with the EPICS Motor
Record [11], whereas advanced features like axis syn-
chronisation and motion interlocks require an extension of
the record.

The ECMC framework is fully integrated into the ESS
EPICS Environment (EEE). It consists of a communica-
tion thread including a command parser and a real-time
control thread executing within the EPCIS process.
Communication between EPICS records and ECMC
threads are realised through the asynDriver [12]. Specifi-
cally, the motor record communication is based on the
Model 3 Motor Driver. The communication thread exe-
cutes a command parser used for configuration purpose
and also non-time-critical communication to EPICS rec-
ords.

The real-time thread reads/writes data from/to the
EtherCAT process image, provided by the open source
Etherlab master [6], ensuring it is up to date. The Ether-
CAT data then can be used for motion control, general

For data acquisition and control, the real-time thread
can pass EtherCAT data, single values or arrays directly to
EPICS records using I/O interrupt with optional configu-
rable sample rate. The maximum update rate of EPICS
records is the same as the sample rate of the real-time
thread, default 1kHz, resulting in that all updates of
EtherCAT data will be accessible from EPICS records.
ECMC also supports oversampling EtherCAT slaves,
which deliver arrays of data for each bus cycle. These
arrays can be made accessible from EPICS as waveform
records.

All general functionalities can be performed from with-
in the EPICS environment. A subset of these functions
like latching or triggering of actions can be as well con-
figured directly in the ECMC layer.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOCPL05

MOCPL05
72

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems

Trajectory object This object implements a trape-
zoidal trajectory generator calculating position set-points
for absolute positioning, relative positioning and constant
velocity. From the generated trajectory, a velocity fee-
forward value is also generated. The position set-point
and the feed-forward velocity is updated with the same
sample rate as the real-time thread.

Figure 3: Overview axis class.

Drive object The drive object handles all logic relat-
ed to a drive. Currently, three types of drives are support-
ed: A DS402 compliant drive [13], a simple drive for
stepper or DC-motors and a drive for generic step-
direction or analogue output.
Depending on the type of drive different links to the
EtherCAT process image are needed. For the DS402
compliant drive, normally a servo drive, the velocity set-
point and the drive control and status words are needed.
The drive object then handles the DS402 state machine
for enabling the drive amplifier. For a simple stepper
motor drive, just the velocity set-point, amplifier enable
command and amplifier enabled feedback needs to be
linked. The same links are established for the third type,
typically a non-EtherCAT drive interfaced with pulse-
direction or pure analogue interface. The velocity set-
point value can be scaled to engineering units.

PID-controller object The controller object receives
the actual position from the encoder object and the set-
point position from the trajectory object as input to the
PID algorithm. The output of the control process is sent as
a velocity set-point to the drive object. Typical object
configurations are controller parameters like gain, integral
gain, derivative gain and maximum output.

Monitor object This object implements evaluation of
digital inputs for limit switches, reference switches or
interlocks as well as monitoring of processed data like
position lags, “at target” position or over speed. It needs

to be linked to a corresponding input or to other data in
the EtherCAT process image.

If a limit switch is actuated the trajectory generator will
initiate a ramp down in speed based on the deceleration
setting. For referencing purposes several homing se-
quences are implemented in ECMC, using the limit
switch, an optional reference switch and/or the encoder
data to reference the actual position of the axis.

The generic interlock input can be used when interfac-
ing other systems to ensure no motion of the axis is per-
formed when the corresponding bit in the EtherCAT pro-
cess image is zero.

Position lag monitoring continuously monitors the dif-
ference between encoder actual position and the position
set-point calculated by the trajectory generator. If the
difference is bigger than a specified tolerance value the
motion will be stopped. This can be useful to identify
mechanical issues and also make commissioning safer.

“At target” monitoring continuously monitors if the ac-
tual encoder position is within a certain tolerance from the
target position. Over speed monitoring ensures the axis
will not move faster than a configurable maximum speed.

Control Loop Execution
In an EtherCAT system the cascaded control loops (cur-

rent, velocity, position) can be executed at different loca-
tions divided between the central controller and the dis-
tributed drive (EtherCAT slave). The simplest approach is
to execute all three control loops at one place in the dis-
tributed drive resulting in reduced load on the controller
CPU and on the bus. However, this setup is not optimal if
you need to synchronize axes since the position control
loop then would be distributed to different drives. Another
drawback of distributing all the control loops is that the
encoder feedback needs to be connected to the drive di-
rectly resulting in reduced flexibility.

Figure 4: Velocity control mode.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOCPL05

Integrating Diverse Systems
MOCPL05

73

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

A more generic setup can be achieved by centralising
the position loop in the bus master, but keeping the ve-
locity and current loop distributed in the drive (Fig. 4). A
centralized position loop facilitates synchronisation be-
tween axes and increases flexibility in connecting the
encoder feedback to any EtherCAT slave in the network.
This control mode, Cyclic Synchronous Velocity (CSV),
is applied by default by ECMC resulting in a cyclic writ-
ing of velocity set-points to the drives.

Synchronisation

Certain variables are accessible in the synchronisation
expressions:
 setPosx trajectory position setpoint of axis x
 actPosx encoder actual position of axis x
 enx amplifier enable command of axis x
 ilx interlock (allow motion) of axis x

All variables can both be read and written to in the ex-
pressions. Expressions are evaluated in the real-time
thread at a default frequency of 1kHz ensuring true syn-
chronisation. A few examples are listed below:

Slaving Axis 2 will follow actual position of axis 1:
setPos2:=actPos1;

Simple synchronisation Axis 2 will get same set-
point position as axis 1:

setPos2:=setPos1;

Gearing Axis 2 will gear with a factor 0.5 to axis 1:
setPos2:=0.5*setPos1;

Static phasing Axis 2 will be phase offset 10 units
compared to axis 1:

setPos2:=setPos1+10;

Dynamic phasing Axis 3 will be phase offset the set-
point of axis 2 compared to axis 1:

setPos3:=setPos1+setPos2;

Advanced synchronisation Axis 1 will get a set-
point calculated as the sinus of the sum of the set-point of
axis 2 and the actual position of axis 3 with an amplitude
of 10:

setPos1:=10*sin(setPos2+actPos3);

Interlocks Axis 1 is allowed to move if axis 2 and
axis 5 is allowed to move and the actual position of axis 4
is bigger than actual position of axis 3:

il1:=il2 and il5 and actPos4>actPos3;

Amplifier enable Axis 2 will receive an enable am-
plifier command if axis 1 receives an enable amplifier
command:

en2:=en1;

Application example slit system Consider a 2-axis
slit system like in Fig 5. In this case, the slit centre posi-
tion and gap (opening) needs to be controlled instead of
the actual position of the physical axes moving the two
blades. These two axes need to be defined as virtual axes
since they have no hardware connected. In addition to the
two virtual axes we also need to define two normal axes
corresponding to the real blade positions.

Figure 5: 2-blades slit system.

The synchronization expressions describing the rela-
tions between the virtual and the normal axes can be de-
fined as:

setPos3:=setPos1-setPos2/2;
setPos4:=setPos1+setPos2/2;
actPos1:=(actPos3+actPos4)/2;
actPos2:=(actPos4-actPos3);

Finally, the amplifier enable commands needs to be
configured so that both axis 3 and axis 4 are enabled if
axis 1 or 2 is enabled:

en3:=en1 or en2;
en4:=en1 or en2;

Virtual axes synchronisation If yet another virtual
axis, axis 5, is configured simulating a master timing
system, the slit system centre position and gap can be
synchronized to each other by adding four more expres-
sions. In our example the slit system centre position will
be controlled to a sinusoidal with a frequency related to
the timing system actual position. The slit system opening
will be controlled to a cosines at a slightly lower frequen-
cy compared to the slit centre position:

setPos1:=10*sin(actPos5);
setPos2:=5*cos(actPos5/1.5);

The amplifier enable of axis 1 and axis 2 can be linked
to the enable of the simulated master timing system axis:

en1:=en5;
en2:=en5;

In total, this example includes five EPICS Motor Rec-
ords extended with expressions defining the synchronisa-
tion behaviour. Figure 6 shows the resulting motion when
enabling and running the simulated master system, axis 5,
at a constant velocity. The equation-system defined by the
expressions is evaluated in the real-time loop in 1 kHz.

Synchronisations between axes are configured by ex-
pressions (equations) [14]. These expressions can be
configured and updated directly from EPICS records at
runtime and can be seen as extensions to the Motor Rec-
ord. This approach allows each axis to be controlled by a
Motor Record and still be synchronized to other axes.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOCPL05

MOCPL05
74

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems

Figure 6: Movements of two virtual (#1, #2) and two real
axes (#3, #4) in a synchronised slit setup sampled in 10Hz.

HARDWARE SETUP
A typical ECMC hardware setup consists of a CPU in a

standard computer with the EtherCAT master and the
EPICS IOC running and an EtherCAT network with
commercially available bus slaves on dedicated hardware
to connect sensors and actors.

Hardware for EPICS, ECMC and Bus Master
For development and test purposes ECMC, bus master

and EPICS have been implemented so far on industrial
DIN rail and 19”-1HU-computers with a CentOS 7 Linux
distribution. Ultimately it needs to be transferred to a
μTCA CPU in order to combine beam instrumentation,
motion control and EPICS-IOC functionality in one place.

Motion Control Terminals as EtherCAT Slaves
A number of commercially available EtherCAT slaves

has been evaluated and integrated into ECMC:
 Beckhoff terminals for servo and stepper motors

< 3.5Arms [1].
 Beckhoff terminals for incremental and absolute

encoders and resolver.
 Beckhoff terminals for digital and analog I/Os.
 Kuhnke terminals for servo and stepper motors

< 5Arms. [15].
 Technosoft drives for high power stepper motors

< 14Arms [16].
Hardware evaluation is on-going and a comprehensive

list of integrated and tested CPU platforms and EtherCAT
slaves will be published in the future.

CONCLUSIONS
A motion control framework for use within the ESS

EPICS Environment has been developed. The framework
utilises the open source EtherCAT master from IgH
Etherlab to configure and communicate with EtherCAT
hardware. Basic motion functionalities as well as more
advanced have been implemented. The framework can
also be utilised for general control and data acquisition.

Next steps in the project at ESS will be to apply this
framework to ESS accelerator motion control use cases
and to continue the evaluation of commercial hardware
for adding them to the framework.

ACKNOWLEDGEMENT
The authors would like to thank all contributors in the

EtherCAT Open Source and in the EPICS community for
their previous work, the other colleagues at the ESS Mo-
tion Control & Automation Group for discussions and
hardware support and the ESS Integrated Controls System
Division ICS for initiating and funding the project.

REFERENCES
[1] Beckhoff Automation GmbH,

http://www.beckhoff.com

[2] EtherCAT Technology Group,
http://www.ethercat.org

[3] D. Piso, S.L. Birch, A. Nordt, T. Gahl, P. Arnold, J. Wei-
send II, T. Korhonen, “ESS PLC controls strategy”, in
Proc. IPAC’15, Richmond, VA, USA, May 2015, paper
WEPMN061, pp. 3066-3068.

[4] T. Korhonen et al., “Status of the European Spallation
Source Control System”, in Proc. ICALEPCS’15, Mel-
bourne, Australia, Oct. 2015, paper FRB3O02, pp. 1177-
1181.

[5] T. Korhonen, “ESS Controls hardware plans and status”,
presented at the EPICS Collaboration Meeting, Oak
Ridge, USA, Sept. 2016, unpublished.

[6] IgH EtherLab Components, http://www.etherlab.org
[7] R. Mercado, I. Gillingham, J. Rowland, K. Wilkinson,

“Integrating EtherCAT based IO into EPICS at Diamond”,
in Proc. ICALEPCS’11, Grenoble, France, Oct. 2011, pa-
per WEMAU004, pp. 662-665.

[8] I. J. Gillingham, T. Friedrich, S. C. Lay, R. Mercado,
“Experiences and lessons learned in transitioning beamline
front-ends from VMEbus to modular distributed I/O”, in
Proc. ICALEPCS’15, Melbourne, Australia, Oct. 2015,
paper MOPGF019, pp. 121-124.

[9] D. Maier-Manojlovic, “Real-time EtherCAT driver for
EPICS and embedded LINUX at Paul Scherrer Institut
(PSI)”, in Proc. ICALEPCS’15, Melbourne, Australia,
Oct. 2015, paper MOPGF027, pp. 153-156.

[10] A. Sandström, T. Bögershausen, “Open Source Motion
Control”, presented at the EPICS Collaboration Meeting,
Lund, Sweden, May 2016, unpublished.

[11] EPICS: Motor Record and Device/Driver support,
https://www3.aps.anl.gov/bcda/synApps/motor/
index.html

[12] M. Rivers, asynDriver: Asynchronous Driver Support,
http://www.aps.anl.gov/epics/modules/soft/as
yn/

[13] IEC 61800-7, part 7-1, part 7-200, part 7-300. Adjustable
speed electrical power drive systems - Part 7: Generic in-
terface and use of profiles for power drive systems.

[14] Arash Partow, C++ Mathematical Expression Toolkit
Library (ExprTk),
www.partow.net/programming/exprtk

[15] Kendrion Kuhnke Automation,
https://kuhnke.kendrion.com

[16] Technosoft, http://www.technosoftmotion.com

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOCPL05

Integrating Diverse Systems
MOCPL05

75

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

