

Tomasz Włostowski
Beams Department
Controls Group
Hardware and Timing Section

Developing hard real-time systems
using FPGAs and soft CPU cores

Melbourne, 22 October 2015

Outline

● Hard Real Time control systems: background

● The Mock Turtle Core

● The RV – a soft processor core designed at CERN

● Application examples

● Summary and outlook

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

2

Hard Real Time Controls
What do we mean by hard RT?

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

3

Hard RT: technologies
FPGAs

✔ Very low and deterministic latency
✔ Easy to customize
✗ Long development cycle
✗ Difficult to program by the end user

Embedded processors
✔ Deterministic latency
✔ Easy to program
✗ Difficult to customize (often need a

companion FPGA)
✗ Portability issues

PLCs
✔ Standardized environment
✔ Easy to program by the end users
✗ Too slow for many accelerator

applications

Linux PCs
✔ Very short development cycle
✔ Easy to program by the end users
✗ Can't guarantee determinism

(at least on x86 platform)

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

4

Example: CERN timing receiver

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

● Custom VHDL design, done from scratch

● Only a small part (counters) really needs dedicated VHDL

● Limited flexibility

5

Example: LHC Instability Trigger
a.k.a. The LIST

6

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

● Instruments in Point 4
detect an onset of beam
instability

● Generate a trigger

● Distribute the trigger to
other instruments and
acquire a massive amount of
data for offline study.

LIST: The Challenge 7

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

● Exchange triggers between any pair of devices
in the network

● Never exceed the design latency (max 270 s)

● Never miss a trigger

● Deliver a feature-rich system in a reasonable
time...

Distributed hard real time system

Hard RT: technologies 8

PLCs
✔ Standardized environment
✔ Easy to program by the end users
✗ Too slow for many accelerator

applications

Linux PCs
✔ Very short development cycle
✔ Easy to program by the end users
✗ Can't guarantee determinism

(at least on x86 platform)

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

FPGAs
✔ Very low and deterministic latency
✔ Easy to customize
✗ Long development cycle
✗ Difficult to program by the end user

Embedded processors
✔ Deterministic latency
✔ Easy to program
✗ Difficult to customize (often need a

companion FPGA)
✗ Portability issues

Outline

● Hard Real Time control systems: background

● The Mock Turtle Core

● The RV – a soft processor core designed at CERN

● Application examples

● Summary and outlook

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

9

Mock Turtle: the idea 10

● Take an FPGA chip

● Take a CPU core that is
deterministic

● Put as many CPUs as needed

● Let them communicate with
each other...

● … and with the external world

● Connect user cores and
hardware

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 11

● Take an FPGA chip

● Take a CPU core that is
deterministic

● Put as many CPUs as needed

● Let them communicate with
each other...

● … and with the external world

● Connect user cores and
hardware

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 12

● Take an FPGA chip

● Take a CPU core that is
deterministic

● Put as many CPUs as needed

● Let them communicate with
each other...

● … and with the external world

● Connect user cores and
hardware

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 13

● Take an FPGA chip

● Take a CPU core that is
deterministic

● Put as many CPUs as needed

● Let them communicate with
each other...

● … and with the external world

● Connect user cores and
hardware

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 14

● Take an FPGA chip

● Take a CPU core that is
deterministic

● Put as many CPUs as needed

● Let them communicate with
each other...

● … and with the external world

● Connect user cores and
hardware

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 15

● Take an FPGA chip

● Take a CPU core that is
deterministic

● Put as many CPUs as needed

● Let them communicate with
each other...

● … and with the external world

● Connect user cores and
hardware

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 16

Make it a service!
● Standard.

● Portable.

● Reusable.

● With or without White Rabbit
as the means of communication
and synchronization.

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Inside Mock Turtle
The CPU Cores

17

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

● Up to 8 LM32 cores, with
private code/data memory

● Programed in bare metal C,
using standard GCC tool chain

● Each core runs a single task in
a tight loop.

● No caches, no interrupts
● Program loading and flow

control from the host system
● Run with same time base if

used with WR

Inside Mock Turtle
Shared Memory

18

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

● Foreseen for inter-core
communication and task
synchronization

● Small, but atomically accessed
● Add/subtract
● Bit operations
● Test-and-set

● Task synchronization primitives
● Mutexes
● Semaphores
● Queues
● Flags
● Events...

Inside Mock Turtle
Communication System

19

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

● Simple FIFO queues holding
multiple messages

● Polling in a tight loop on the RT side
● Interrupt-driven on the host side

● Each queue provides a
configurable number of channels
(slots)

● Host Message Queue for
communication with the host
software

● Optional Remote Message
Queue for communication with
other nodes over WR network

● Uses Etherbone protocol

Inside Mock Turtle
Software Architecture

20

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

● Unified kernel driver + user
space C library

● Host code written in user space
 easier development→

● Message Queue and Shared
Memory access

● Loading CPU applications and
controlling each core's execution
flow

● Real-time library for the CPU
cores.

● Python bindings available.

Outside Mock Turtle
Interfaces & integration in user design

21

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

● Based on the Wishbone bus.
● Each CPU can have its exclusive

Dedicated Peripheral.
● All CPUs can access Shared

Peripheral(s).
● Etherbone master/slave port for

communication with other
nodes in a WR network
(optional).

● Time interface from the WR
PTP Core.

● Control port for the host
system.

Outline

● Hard Real Time control systems: background

● The Mock Turtle Core

● The RV – a soft processor core designed at CERN

● Application examples

● Summary and outlook

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

22

What is RV?
● Micro RISC-V: a compact soft processor (CPU) core for use in

FPGAs.

 →Written in Verilog, no external dependencies.

● Reduced Instruction Set (RISC) processor.

 → Small number of instructions, each doing one function at a time.

● Based on the RISC-V architecture developed at the University
of Berkeley.

 →Well thought and promising instruction set.

● Small, portable and deterministic.

 →Determinism of execution over performance.

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

23

Why RV?

● A number of our projects depend on soft CPUs

● Popular architectures have either license limitations (LM32) or
are patented (ARM, MIPS)

● FPGA vendor-provided cores (Microblaze, Nios) are not
portable (no sources available either)

● RISC-V: a very nice architecture, but with no small
Verilog/VHDL implementation

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

24

The RV design

● Simple, 4-stage pipeline
● All instructions except jumps (branches) in one clock cycle
● Code/data in a private memory
● Wishbone bus for peripheral access
● 100 MHz and 20% of a small FPGA (Spartan-6 SLX9)

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

25

Outline

● Hard Real Time control systems: background

● The Mock Turtle Core

● The RV – a soft processor core designed at CERN

● Application examples

● Summary and outlook

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

26

 T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Trigger Distribution Node
● Dual-core system:

● 32 kB private RAM per CPU

● CPU 1 responsible for the inputs:
● Poll TDC for incoming pulses
● Apply dead time
● Assign trigger ID
● Send to the WR network
● Log the trigger

● CPU 0 takes care of the outputs:
● Poll Remote MQ for trigger messages
● Search a hash table for matching

triggers
● Apply delay & dead time
● Program the pulse generator
● Log the trigger

27

 T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Trigger Distribution Node
Example of a real time task

Purpose

28

Outline

● Hard Real Time control systems: background

● The Mock Turtle Core

● The RV – a soft processor core designed at CERN

● Application examples

● Summary and outlook

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

29

 T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Summary & outlook
● Proven real-time performance

● Trigger distribution system working in the LHC
● Other projects (FIP master & RF distribution) ongoing

● Savings in development time
● Minimal amount of dedicated VHDL
● Standardized software stack and interfaces

● A service that anyone can use

● The RV soft processor
● Passes CoreMark & official RISC-V test suite
● Migration of MT Cores from LM32 in progress

Sources available

at the Open Hardware Repository: ohwr.org

30

Questions?

T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

 T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

MasterFIP project 31

 T. Włostowski
Developing hard real-time systems using FPGAs and soft CPU cores

MasterFIP project
● Clean implementation of WorldFIP bus master

● Critical technology for LHC controls in radiation areas

● Two-CPU design
● CPU0 plays the current FIP macrocycle
● CPU1 exchanges the cycle configuration and variables with the host
● Dedicated VHDL only needed to serialize/deserialize FIP frames

● Shared Memory holds the FIP variables and macrocycle setup

● No White Rabbit

32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

