Tomasz Wtostowski

Beams Department
Controls Group
Hardware and Timing Section

Developing hard real-time systems
using FPGAs and soft CPU cores

Melbourne, 22 October 2015

Qutline ?

Hard Real Time control systems: background

The Mock Turtle Core
The uRV - a soft processor core designed at CERN

Application examples

Summary and outlook

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Hard Real Time Controls 3
What do we mean by hard RT?

Input: receive an event or trigger, Execute the result of the Processing step:
take a measurement of a control input produce a pulse, update a DAC, etc.

: v

Processing: . .

- decode a timing event __idle time
- calculate action execution time

- update a feedback loop

< Y
Ty, 4 .
worst case latency hard deadline

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Hard RT: technologies 4

FPGAs

v Very low and deterministic latency
v Easy to customize

¥ Long development cycle

x Difficult to program by the end user

Embedded processors

v Deterministic latency

v Easy to program

x Difficult to customize (often need a
companion FPGA)

X Portability issues

PLCs

v Standardized environment

v Easy to program by the end users

x Too slow for many accelerator
applications

Linux PCs

v Very short development cycle
v Easy to program by the end users
¥ Can't guarantee determinism

(at least on x86 platform)

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

-xample: CERN timing receiver 3

Custom VHDL design, done from scratch

| £ 1Mms]
< > Legend
Pu |Se5 Slow blocks
Event RAM Interface : (rmsl
Strea m I Fast blocks
RS422 (nanoseconds)
Receiver Event Earts
table history a
& filt Counters BEapIS
lneer Bk IP cores
Telegram Counters
buffer history [
GMT
PLL
VME/PCl Interface

Only a small part (counters) really needs dedicated VHDL

Limited flexibility

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

-xample: LHC Instability Trigger ¢

a.k.a. The LIST

. . WR Network
Instruments in Point 4 e
detect an onset of beam
instability

. LHC Point 4 N -
Generate a trigger \
. . . Acronyms:
Distri l?ute the trigger to s st
other instruments and AP = Wideband Pck
. o BST = Beam Synchronous Timing

acquire a massive amount of MIM = Matband hstabilty Monitor
data for offline study. 5 (6T |

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

IST: The Challenge 7

Distributed hard real time system

Exchange triggers between any pair of devices
in the network

Never exceed the design latency (max 270 us)
Never miss a trigger

Deliver a feature-rich system in a reasonable
time...

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Hard RT: technologies 8

FPGAs

v Very low and deterministic latency
v Easy to customize

Embedded processors

v Deterministic latency
v Easy to program

X X
X

X
v
v

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Qutline ?

The Mock Turtle Core

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 10

) OO .

Take an FPGA chip

Take a CPU core thatis
deterministic

Put as many CPUs as needed

Let them communicate with FPGA

each other...
... and with the external world

Connect user cores and
hardware

S UOUOUOOOUOOOOnnOnoo

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 11

.) NN .
Take an FPGA chip FPGA

Take a CPU core that is
deterministic

Put as many CPUs as needed

Let them communicate with CPU Core

each other...

... and with the external world

Connect user cores and
hardware

S UOUOUOOOUOOOOnnOnoo

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 2

.) NN .
Take an FPGA chip FPGA

Take a CPU core thatis
deterministic

Put as many CPUs as needed

CPU Cores

Let them communicate with

each other...

... and with the external world

Connect user cores and
hardware

S UOUOUOOOUOOOOnnOnoo

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 13

) OO .

Take an FPGA chip EPGA
Take a CPU core thatis Shared
deterministic it
Put as many CPUs as needed I

CPU Cores
Let them communicate with
each other...

... and with the external world

Connect user cores and
hardware

S UOUOUOOOUOOOOnnOnoo

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 14

Take an FPGA chip I0NNANNNANONNANANANANNAT
. FPGA
Take a CPU core that s
deterministic Shared
Put as many CPUs as needed I
Let them communicate with CPU Cores o
each other... T we
$ i Network
... and with the external world "
Host Remote >
Message Queue Message Queue
Connect user cores and R
hardware o
\ Status
(0000 J00000000000000000 ’

Host system (FESA, EPICS, etc.)

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Mock Turtle: the idea 15
Take an FPGA chip) pmnnnmnn oo oo .
Take a CPU core that is e
deterministic St | sl e
Put as many CPUs as needed I I I
Let them communicate with CPU Cores

Time
oo [cocn R
each other... $ $ Network

... and with the external world o —— "
Message Queue Message Queue <

Connect user cores and Commands

hardware oate

Status

) 101N {R{NA AR 0|00 N {R{N{R[R [N N N NIRII]E ’
Host system (FESA, EPICS, etc.)

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Triggerin Trigger out

Mock Turtle: the idea sk

Make it a service!
Standard.
Portable.

Reusable.

With or without White Rabbit
as the means of communication
and synchronization.

~ FMCTDC

¥ /\ . e
_OAnnannnnm ﬂﬂﬂﬂﬂﬂﬂTﬂﬂﬂﬂ\

FPGA
A 4
Shared TDC Fine Delay
memory core core
CPU Cores

! !

Host
Message Queue

Remote
Message Queue

Data
Status

) UUUUU¢UUUUUUUUUUUUUUUUUU)

Host system (FESA, EPICS, etc.)

T.

MoclkdlurtieiCore h

16

Time
WR
Network

Trigger Messages

WHtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

INnside Mock Turtle 17

The CPU Cores

$
Up to 8 LM32 cores, with Application-specific
° cores
private code/data memory I
Programed in bare metal C, oo] [cPUCores —
using standard GCC tool chain | memory WR
3 2 Network
Each core runs a single task in — b messages
. Control Host Remote
a tlght |OOp. ‘ registers Message Queue | Message Queue ——»
| S F |

No caches, no interrupts

l Host drivers ‘

Program loading and flow 2 ;_‘”a“’
control from the host system Bonlsdssopzalion
(FESA, etc.)

Run with same time base if
used with WR

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

INnside Mock Turtle 18

Shared Memory

Foreseen for inter-core :
. . Application-specific
communication and task
synchronization I
H Shared | S Gonss -) TAl time
Small, but atomically accessed b | - e
Add/subtract 1 T o Moo
Blt Operations Control | Host Remote mﬁiages
TeSt‘and'Set reg;sters | Messagf Queue | Message Queue .—»

Task synchronization primitives

Host drivers

Mutexes and library

Semaphores I -
Controls application

Queues (FESA, etc.)

Flags

Events...

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

INnside Mock Turtle 19

Communication System

Simple FIFO queues holding $
multiple messages A RCE S
Polling in a tight loop on the RT side I
Interrupt-driven on the host side 5Pl Coron
Shared - B) TAl time
Each queue provides a ek B o B WR
" I I . Etherbone R—
configurable number of channels messages
Control Host Remote ot
(SIOtS) registers Message Queue Message Queue ——»
 S— §
Host Message Queue for . ti
communication with the host and library
software — —
ontrols application
(FESA, etc.)

Optional Remote Message
Queue for communication with

other nodes over WR network
Uses Etherbone protocol

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

INnside Mock Turtle 20

Software Architecture

Unified kernel driver + user ¢
o Application-specific
space C library

cores

Host code written in user space I

— easier development wﬂ o C”T " .
MeSSage Queue and Shared " i i EL‘:;Z;QE Network
Memory access coa |t] emae
Loading CPU applications and 1 '

controlling each core's execution % S [,

ﬂOW E % Controls zpplication

Real-time library for the CPU bl | (FESAec)

cores.

Python bindings available.

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Qutside Mock Turtle 21

Interfaces & integration in user design

Based on the Wishbone bus.
Optional
Each CPU can have its exclusive i uiltngWR)

Dedicated Peripheral. _ Core0s | [corers ,
Peripzzu:al(s} Dedicated Dedicated White Rabbit
All CPUs can access Shared Peripheral | | Peripheral | Network

Peripheral(s).

‘ ‘ time &

CPU Cores frequehc){ WR PTP
;! Core
Core I\ L

Etherbone master/slave port for
communication with other

. ! + _,---..‘.“ _________ .a"; t

nodes in a WR network - e -

. | Control Host : Remote EBS Etherbone
(O ptl O n a I) . . | registers Message Queue Message Queue EBM Core :

4 = $ s 5w
Time interface from the WR L % | | - ¢
PTP Core. Host system Wishbone busses and ports
(settings, etc.)

Control port for the host
system.

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Qutline &

Hard Real Time control systems: background

The Mock Turtle Core
The uRV - a soft processor core designed at CERN

Application examples

Summary and outlook

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

What is uRV? -

Micro RISC-V: a compact soft processor (CPU) core for use in
FPGAs.

— Written in Verilog, no external dependencies.
Reduced Instruction Set (RISC) processor.

— Small number of instructions, each doing one function at a time.

Based on the RISC-V architecture developed at the University
of Berkeley.

— Well thought and promising instruction set.

Small, portable and deterministic.

— Determinism of execution over performance.

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Why uRV? 24

A number of our projects depend on soft CPUs

Popular architectures have either license limitations (LM32) or
are patented (ARM, MIPS)

FPGA vendor-provided cores (Microblaze, Nios) are not
portable (no sources available either)

RISC-V: a very nice architecture, but with no small
Verilog/VHDL implementation

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

The uRV design

25

Wishbone
peripheral

Simple, 4-stage pipeline

interface

Registers |«
. D X1/M | | X2/W
—.. _h'
Fetch D Execute 1 Execute 2
Memory Writeback
Private code/data memory
I/0 bridge

<+

All instructions except jumps (branches) in one clock cycle

Code/datain a private memory

Wishbone bus for peripheral access
100 MHz and 20% of a small FPGA (Spartan-6 SLX9)

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Qutline 26

Hard Real Time control systems: background

The Mock Turtle Core
The uRV - a soft processor core designed at CERN

Application examples

Summary and outlook

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Trigger Distribution Node 27

FMC Delay FMCTDC WR N.etwork
4x trigger out 5xtriggerin link

Dual-core system:

32 kB private RAM per CPU : 44414
3
CPU 1responsible for the inputs: 5
Poll TDC for incoming pulses L e
Apply dead time A SR
Assign trigger ID : £ :
Send to the WR network : E
Log the trigger E § Tigger | WRPTP :
- messages Core :
CPU 0 takes care of the outputs: |
Poll Remote MQ for trigger messages T 5
Search a hash table for matching S e—— ———— e em——
tri ggers % Mock Turtle Drivers P L.ow-leve‘-l
Apply delay & dead tlme % Trigger Distrilfution ClLibrary < dlat?)r:)(l):tlc
Program the pulse generator 2 $
- FESA classes

Log the trigger 3

Client application (LHC Instabilities, etc...)

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Trigger Distribution Node 28

Example of a real time task

i)
{

do input();
do control();
wr update link();

}
0;

T. Wtostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Qutline 29

Hard Real Time control systems: background

The Mock Turtle Core
The uRV - a soft processor core designed at CERN

Application examples

Summary and outlook

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

Summary & outlook 30

Proven real-time performance
Trigger distribution system working in the LHC
Other projects (FIP master & RF distribution) ongoing

Savings in development time
Minimal amount of dedicated VHDL
Standardized software stack and interfaces

A service that anyone can use

The uRV soft processor

Passes CoreMark & official RISC-V test suite
Migration of MT Cores from LM32 in progress

Sources available

at the Open Hardware Repository: ohwr . org

T. Wtostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Questions?

T. Wtostowski
Developing hard real-time systems using FPGAs and soft CPU cores

Master

- P project

31

WorldFIP master
@ Host Message Host Access
- Prog DataMem Queue [PCle]
P [cycle config] | Control Registers
= | = :
1T
al= CPU core0 Shared Mem CPUcorel
= o [WorldFIP cycle] [real time data] [host requests forreal time data]
-
-
RS
S A
oL
=2
'_
WorldFIP WorldFIP
2 5
& o

[2.5Mbps]

Question Response Question Response
Frame Frame Frame Frame
[cycle config] [real time data] [cycle config) [real time data]
: .
s e s

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

MasterkIP project 32

Clean implementation of WorldFIP bus master
Critical technology for LHC controls in radiation areas

Two-CPU design

CPUO plays the current FIP macrocycle
CPU1 exchanges the cycle configuration and variables with the host
Dedicated VHDL only needed to serialize/deserialize FIP frames

Shared Memory holds the FIP variables and macrocycle setup

No White Rabbit

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

