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Hard Real Time Controls
What do we mean by hard RT?
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Hard RT: technologies
FPGAs

✔ Very low and deterministic latency
✔ Easy to customize
✗ Long development cycle
✗ Difficult to program by the end user

Embedded processors
✔ Deterministic latency
✔ Easy to program
✗ Difficult to customize (often need a

companion FPGA)
✗ Portability issues

PLCs
✔ Standardized environment
✔ Easy to program by the end users
✗ Too slow for many accelerator 

applications

Linux PCs
✔ Very short development cycle
✔ Easy to program by the end users
✗ Can't guarantee determinism    

(at least on x86 platform)
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Example: CERN timing receiver
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● Custom VHDL design, done from scratch

● Only a small part (counters) really needs dedicated VHDL

● Limited flexibility
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Example: LHC Instability Trigger
a.k.a. The LIST
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● Instruments in Point 4 
detect an onset of beam 
instability

● Generate a trigger

● Distribute the trigger to 
other instruments and 
acquire a massive amount of 
data for offline study.



  

LIST: The Challenge 7
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● Exchange triggers between any pair of devices 
in the network

● Never exceed the design latency (max 270 s)

● Never miss a trigger

● Deliver a feature-rich system in a reasonable 
time...

Distributed hard real time system



  

Hard RT: technologies 8

PLCs
✔ Standardized environment
✔ Easy to program by the end users
✗ Too slow for many accelerator 

applications

Linux PCs
✔ Very short development cycle
✔ Easy to program by the end users
✗ Can't guarantee determinism    

(at least on x86 platform)
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FPGAs
✔ Very low and deterministic latency
✔ Easy to customize
✗ Long development cycle
✗ Difficult to program by the end user

Embedded processors
✔ Deterministic latency
✔ Easy to program
✗ Difficult to customize (often need a

companion FPGA)
✗ Portability issues
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Mock Turtle: the idea 10

● Take an FPGA chip

● Take a CPU core that is 
deterministic

● Put as many CPUs as needed

● Let them communicate with 
each other...

● … and with the external world

● Connect user cores and 
hardware
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Mock Turtle: the idea 16

Make it a service!
● Standard.

● Portable.

● Reusable.

● With or without White Rabbit 
as the means of communication 
and synchronization.
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Inside Mock Turtle
The CPU Cores
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● Up to 8 LM32 cores, with 
private code/data memory

● Programed in bare metal  C,   
using standard GCC tool chain

● Each core runs a single task in 
a tight loop.

● No caches, no interrupts
● Program loading and flow   

control from the host system
● Run with same time base if 

used with WR



  

Inside Mock Turtle
Shared Memory
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● Foreseen for inter-core 
communication and task 
synchronization

● Small, but atomically accessed
● Add/subtract
● Bit operations
● Test-and-set

● Task synchronization primitives
● Mutexes
● Semaphores
● Queues
● Flags
● Events...



  

Inside Mock Turtle
Communication System
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● Simple FIFO queues holding 
multiple messages

● Polling in a tight loop on the RT side
● Interrupt-driven on the host side

● Each queue provides a 
configurable number of channels 
(slots)

● Host Message Queue for 
communication with the host 
software

● Optional Remote Message 
Queue for communication with 
other nodes over WR network

● Uses Etherbone protocol



  

Inside Mock Turtle
Software Architecture
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● Unified kernel driver + user 
space C library

● Host code written in user space 
 easier development→

● Message Queue and Shared 
Memory access

● Loading CPU applications and 
controlling each core's execution 
flow

● Real-time library for the CPU 
cores.

● Python bindings available.



  

Outside Mock Turtle
Interfaces & integration in user design
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● Based on the Wishbone bus.
● Each CPU can have its exclusive 

Dedicated Peripheral.
● All CPUs can access Shared 

Peripheral(s).
● Etherbone master/slave port for 

communication with other 
nodes in a WR network 
(optional).

● Time interface from the WR 
PTP Core.

● Control port for the host 
system.
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What is RV?
● Micro RISC-V: a compact soft processor (CPU) core for use in 

FPGAs.

 →Written in Verilog, no external dependencies.

● Reduced Instruction Set (RISC) processor. 

 → Small number of instructions, each doing one function at a time.

● Based on the RISC-V architecture developed at the University 
of Berkeley.

 →Well thought and promising instruction set.

● Small, portable and deterministic.

 →Determinism of execution over performance.
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Why RV?

● A number of our projects depend on soft CPUs

● Popular architectures have either license limitations (LM32) or 
are patented (ARM, MIPS)

● FPGA vendor-provided cores (Microblaze, Nios) are not 
portable (no sources available either)

● RISC-V: a very nice architecture, but with no small 
Verilog/VHDL implementation
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The RV design

● Simple, 4-stage pipeline
● All instructions except jumps (branches) in one clock cycle
● Code/data in a private memory
● Wishbone bus for peripheral access
● 100 MHz and 20% of a small FPGA (Spartan-6 SLX9)
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Trigger Distribution Node
● Dual-core system:

● 32 kB private RAM per CPU

● CPU 1 responsible for the inputs:
● Poll TDC for incoming pulses
● Apply dead time
● Assign trigger ID
● Send to the WR network
● Log the trigger

● CPU 0 takes care of the outputs:
● Poll Remote MQ for trigger messages
● Search a hash table for matching 

triggers
● Apply delay & dead time
● Program the pulse generator
● Log the trigger
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Trigger Distribution Node
Example of a real time task

Purpose
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Summary & outlook
● Proven real-time performance

● Trigger distribution system working in the LHC
● Other projects (FIP master & RF distribution) ongoing

● Savings in development time
● Minimal amount of dedicated VHDL
● Standardized software stack and interfaces

● A service that anyone can use

● The RV soft processor
● Passes CoreMark & official RISC-V test suite
● Migration of MT Cores from LM32 in progress

Sources available

at the Open Hardware Repository: ohwr.org
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Questions?
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MasterFIP project 31
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MasterFIP project
● Clean implementation of WorldFIP bus master

● Critical technology for LHC controls in radiation areas

● Two-CPU design 
● CPU0 plays the current FIP macrocycle
● CPU1 exchanges the cycle configuration and variables with the host
● Dedicated VHDL only needed to serialize/deserialize FIP frames

● Shared Memory holds the FIP variables and macrocycle setup

● No White Rabbit
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