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Hard Real Time Controls 3
What do we mean by hard RT?

Input: receive an event or trigger, Execute the result of the Processing step:
take a measurement of a control input produce a pulse, update a DAC, etc.

: v

Processing: . .

- decode a timing event __idle time
- calculate action execution time

- update a feedback loop

< Y
Ty, 4 .
worst case latency hard deadline

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores



Hard RT: technologies 4

FPGAs

v Very low and deterministic latency
v Easy to customize

¥ Long development cycle

x Difficult to program by the end user

Embedded processors

v Deterministic latency

v Easy to program

x Difficult to customize (often need a
companion FPGA)

X Portability issues

PLCs

v Standardized environment

v Easy to program by the end users

x Too slow for many accelerator
applications

Linux PCs

v Very short development cycle
v Easy to program by the end users
¥ Can't guarantee determinism

(at least on x86 platform)
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-xample: CERN timing receiver 3

Custom VHDL design, done from scratch

| £ 1Mms ]
< > Legend
Pu |Se5 Slow blocks
Event RAM Interface : (rmsl
Strea m I Fast blocks
RS422 (nanoseconds)
Receiver Event Earts
table history a
& filt Counters BEapIS
lneer Bk IP cores
Telegram Counters
buffer history [
GMT
PLL
VME/PCl Interface

Only a small part (counters) really needs dedicated VHDL

Limited flexibility
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-xample: LHC Instability Trigger ¢

a.k.a. The LIST

. . WR Network
Instruments in Point 4 e
detect an onset of beam
instability

. LHC Point 4 N -
Generate a trigger \
. . . Acronyms:
Distri l?ute the trigger to s st
other instruments and AP = Wideband Pck
. o BST = Beam Synchronous Timing

acquire a massive amount of MIM = Matband hstabilty Monitor
data for offline study. 5 (6T |
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IST: The Challenge 7

Distributed hard real time system

Exchange triggers between any pair of devices
in the network

Never exceed the design latency (max 270 us)
Never miss a trigger

Deliver a feature-rich system in a reasonable
time...
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Hard RT: technologies 8

FPGAs

v Very low and deterministic latency
v Easy to customize

Embedded processors

v Deterministic latency
v Easy to program

X X
X

X
v
v
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Qutline ?

The Mock Turtle Core
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Mock Turtle: the idea 10

) OO .

Take an FPGA chip

Take a CPU core thatis
deterministic

Put as many CPUs as needed

Let them communicate with FPGA

each other...
... and with the external world

Connect user cores and
hardware

S UOUOUOOOUOOOOnnOnoo

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores



Mock Turtle: the idea 11

. ) NN .
Take an FPGA chip FPGA

Take a CPU core that is
deterministic

Put as many CPUs as needed

Let them communicate with CPU Core

each other...

... and with the external world

Connect user cores and
hardware

S UOUOUOOOUOOOOnnOnoo
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Mock Turtle: the idea 2

. ) NN .
Take an FPGA chip FPGA

Take a CPU core thatis
deterministic

Put as many CPUs as needed

CPU Cores

Let them communicate with

each other...

... and with the external world

Connect user cores and
hardware

S UOUOUOOOUOOOOnnOnoo
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Mock Turtle: the idea 13

) OO .

Take an FPGA chip EPGA
Take a CPU core thatis Shared
deterministic it
Put as many CPUs as needed I

CPU Cores
Let them communicate with
each other...

... and with the external world

Connect user cores and
hardware

S UOUOUOOOUOOOOnnOnoo
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Mock Turtle: the idea 14

Take an FPGA chip  I0NNANNNANONNANANANANNAT
. FPGA
Take a CPU core that s
deterministic Shared
Put as many CPUs as needed I
Let them communicate with CPU Cores o
each other... T we
$ i Network
... and with the external world "
Host Remote >
Message Queue Message Queue
Connect user cores and R
hardware o
\ Status
(0000 J00000000000000000 ’

Host system (FESA, EPICS, etc.)
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Mock Turtle: the idea 15
Take an FPGA chip ) pmnnnmnn oo oo .
Take a CPU core that is e
deterministic St | sl e
Put as many CPUs as needed I I I
Let them communicate with CPU Cores

Time
oo [ cocn R
each other... $ $ Network

... and with the external world o —— "
Message Queue Message Queue <

Connect user cores and Commands

hardware oate

Status

) 101N {R{NA AR 0|00 N {R{N{R[R [N N N NIRII]E ’
Host system (FESA, EPICS, etc.)
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Triggerin Trigger out

Mock Turtle: the idea sk

Make it a service!
Standard.
Portable.

Reusable.

With or without White Rabbit
as the means of communication
and synchronization.

~ FMCTDC

¥ /\ . e
_OAnnannnnm ﬂﬂﬂﬂﬂﬂﬂTﬂﬂﬂﬂ\

FPGA
A 4
Shared TDC Fine Delay
memory core core
CPU Cores

! !

Host
Message Queue

Remote
Message Queue

Data
Status

) UUUUU¢UUUUUUUUUUUUUUUUUU)

Host system (FESA, EPICS, etc.)

T.

MoclkdlurtieiCore h

16

Time
WR
Network

Trigger Messages

WHtostowski

Developing hard real-time systems using FPGAs and soft CPU cores



INnside Mock Turtle 17

The CPU Cores

$
Up to 8 LM32 cores, with Application-specific
° cores
private code/data memory I
Programed in bare metal C, oo ] [cPUCores —
using standard GCC tool chain | memory WR
3 2 Network
Each core runs a single task in — b messages
. Control Host Remote
a tlght |OOp. ‘ registers Message Queue | Message Queue ——»
| S F |

No caches, no interrupts

l Host drivers ‘

Program loading and flow 2 ;_‘”a“’
control from the host system Bonlsdssopzalion
(FESA, etc.)

Run with same time base if
used with WR
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INnside Mock Turtle 18

Shared Memory

Foreseen for inter-core :
. . Application-specific
communication and task
synchronization I
H Shared | S Gonss - ) TAl time
Small, but atomically accessed b | - e
Add/subtract 1 T o Moo
Blt Operations Control | Host Remote mﬁiages
TeSt‘and'Set reg;sters | Messagf Queue | Message Queue .—»

Task synchronization primitives

Host drivers

Mutexes and library

Semaphores I -
Controls application

Queues (FESA, etc.)

Flags

Events...
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INnside Mock Turtle 19

Communication System

Simple FIFO queues holding $
multiple messages A RCE S
Polling in a tight loop on the RT side I
Interrupt-driven on the host side 5Pl Coron
Shared - B ) TAl time
Each queue provides a ek B o B WR
" I I . Etherbone R—
configurable number of channels messages
Control Host Remote ot
(SIOtS) registers Message Queue Message Queue ——»
 S— §
Host Message Queue for . ti
communication with the host and library
software — —
ontrols application
(FESA, etc.)

Optional Remote Message
Queue for communication with

other nodes over WR network
Uses Etherbone protocol
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INnside Mock Turtle 20

Software Architecture

Unified kernel driver + user ¢
o Application-specific
space C library

cores

Host code written in user space I

— easier development wﬂ o C”T " .
MeSSage Queue and Shared " i i EL‘:;Z;QE Network
Memory access coa |t ] emae
Loading CPU applications and 1 '

controlling each core's execution % S [,

ﬂOW E % Controls zpplication

Real-time library for the CPU bl | (FESAec)

cores.

Python bindings available.
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Qutside Mock Turtle 21

Interfaces & integration in user design

Based on the Wishbone bus.
Optional
Each CPU can have its exclusive i uiltngWR)

--------

Dedicated Peripheral. _ Core0s | [ corers ,
Peripzzu:al(s} Dedicated Dedicated White Rabbit
All CPUs can access Shared Peripheral | | Peripheral | Network

Peripheral(s).

‘ ‘ time &

CPU Cores frequehc){ WR PTP
;! Core
Core I\ L

Etherbone master/slave port for
communication with other

. ! + _,---..‘.“ _________ .a"; t

nodes in a WR network - e -

. | Control Host : Remote EBS Etherbone
(O ptl O n a I ) . . | registers Message Queue Message Queue EBM Core :

4 = $ s 5w
Time interface from the WR L % | | - ¢
PTP Core. Host system Wishbone busses and ports
(settings, etc.)

Control port for the host
system.

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores



Qutline &

Hard Real Time control systems: background

The Mock Turtle Core
The uRV - a soft processor core designed at CERN

Application examples

Summary and outlook
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What is uRV? -

Micro RISC-V: a compact soft processor (CPU) core for use in
FPGAs.

— Written in Verilog, no external dependencies.
Reduced Instruction Set (RISC) processor.

— Small number of instructions, each doing one function at a time.

Based on the RISC-V architecture developed at the University
of Berkeley.

— Well thought and promising instruction set.

Small, portable and deterministic.

— Determinism of execution over performance.
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Why uRV? 24

A number of our projects depend on soft CPUs

Popular architectures have either license limitations (LM32) or
are patented (ARM, MIPS)

FPGA vendor-provided cores (Microblaze, Nios) are not
portable (no sources available either)

RISC-V: a very nice architecture, but with no small
Verilog/VHDL implementation
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The uRV design

25

Wishbone
peripheral

Simple, 4-stage pipeline

interface

Registers |«
. D X1/M | | X2/W
—.. _h'
Fetch D Execute 1 Execute 2
Memory Writeback
Private code/data memory
I/0 bridge

<+

All instructions except jumps (branches) in one clock cycle

Code/datain a private memory

Wishbone bus for peripheral access
100 MHz and 20% of a small FPGA (Spartan-6 SLX9)
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Qutline 26

Hard Real Time control systems: background

The Mock Turtle Core
The uRV - a soft processor core designed at CERN

Application examples

Summary and outlook
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Trigger Distribution Node 27

FMC Delay FMCTDC WR N.etwork
4x trigger out 5xtriggerin link

Dual-core system:

32 kB private RAM per CPU : 44414
3
CPU 1responsible for the inputs: 5
Poll TDC for incoming pulses L e
Apply dead time A SR
Assign trigger ID : £ :
Send to the WR network : E
Log the trigger E § Tigger | WRPTP :
- messages Core :
CPU 0 takes care of the outputs: |
Poll Remote MQ for trigger messages T 5
Search a hash table for matching S e—— ———— e em——
tri ggers % Mock Turtle Drivers P L.ow-leve‘-l
Apply delay & dead tlme % Trigger Distrilfution ClLibrary < dlat?)r:)(l):tlc
Program the pulse generator 2 $
- FESA classes

Log the trigger 3

Client application (LHC Instabilities, etc...)
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Trigger Distribution Node 28

Example of a real time task

i)
{

do input();
do control();
wr update link();

}
0;
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Qutline 29

Hard Real Time control systems: background

The Mock Turtle Core
The uRV - a soft processor core designed at CERN

Application examples

Summary and outlook
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Summary & outlook 30

Proven real-time performance
Trigger distribution system working in the LHC
Other projects (FIP master & RF distribution) ongoing

Savings in development time
Minimal amount of dedicated VHDL
Standardized software stack and interfaces

A service that anyone can use

The uRV soft processor

Passes CoreMark & official RISC-V test suite
Migration of MT Cores from LM32 in progress

Sources available

at the Open Hardware Repository: ohwr . org
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Questions?
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Master

- P project

31

WorldFIP master
@ Host Message Host Access
- Prog DataMem Queue [PCle]
P [cycle config] | Control Registers
= | = :
1T
al= CPU core0 Shared Mem CPUcorel
= o [WorldFIP cycle] [real time data] [host requests forreal time data]
-
-
RS
S A
oL
=2
'_
WorldFIP WorldFIP
2 5
& o

[2.5Mbps]

Question Response Question Response
Frame Frame Frame Frame
[cycle config] [real time data] [cycle config) [real time data]
: .
s e s

T. Wtostowski

Developing hard real-time systems using FPGAs and soft CPU cores




MasterkIP project 32

Clean implementation of WorldFIP bus master
Critical technology for LHC controls in radiation areas

Two-CPU design

CPUO plays the current FIP macrocycle
CPU1 exchanges the cycle configuration and variables with the host
Dedicated VHDL only needed to serialize/deserialize FIP frames

Shared Memory holds the FIP variables and macrocycle setup

No White Rabbit
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