

Large-scale distribution of femtosecond timing for Accelerators

Lawrence Doolittle, John Byrd, Gang Huang, John W. Staples, Russell Wilcox Lawrence Berkeley National Laboratory

12 Oct 2011

ICALEPCS2011, Grenoble

1

Berkeley Timing Group

Russell Wilcox, Gang Huang, Larry Doolittle, John Byrd, Alex Ratti, John Staples

12 Oct, 2011

John Byrd

Overview

- Applications for femtosecond timing
- Interferometrically stabilized fiber links
- Results
 - Lab measurements
 - Linac Coherent Light Source
 - Fermi@Elettra
- Extension to >20 km links
- Summary

- This giant machine makes <10fs X-ray pulses!
- Pump/probe experiments require laser synchronization with electron arrival time measurements. Users want best possible synchronization.
- A "star configuration" clock distribution system provides signals for laser sync and other timing-critical functions

Application: Linear colliders

ohn Bvra

۲

Application: Large radiotelescope arrays

- The effective aperture of large telescope is set in part by the stability of the relative of the master clock signal
- Example: Atacama Large Millimeter Array

- Interferometer measures delay, reports to digital phase detector
- Easily extended to many channels by increasing fanout at transmitter.

Stabilized fiber link: error sources

1. High stability laser frequency lock to atomic absorption line

2. Low noise amplitude modulation at arbitrary frequency

3. Interferometric line stabilization scheme

4. Temperature and humidity controlled fan-out and reference line

- 5. Diodes operated to minimize amplitude-to-phase conversion
- 6. Feedforward correction for thermal coefficient of dispersion

7.Low noise detection of RF phase

12 Oct, 2011

Why optical fiber links?

- Problem: coaxial cables and optical fiber have a temperature dependence of propagation delay of about 50 psec/km/deg-C.
 - Completely unacceptable for next-gen light sources both for RF systems and lasers.
 - Temp. stabilized cables impractical for large installations.
- Solution: use optical interferometry over fiber links to measure length change and actively feedback to stabilize signal propagation delay.
 - Fiber provides THz bandwidth, low attenuation, electrical isolation. Acoustically sensitive.
 - Optical signal transmission allows very sensitive interferometry (time or frequency domain).
 - Commodity grade fiber technology relatively cheap.

Time and Frequency Domain Stabilized Links

 Fiber links can be stabilized based on the revolution in metrology time and wavelength standards over the past decade.

Correction BW limited to R/T travel time on fiber (e.g. 1 km fiber gives 100 kHz)

Our recipe for stabilized RF transmission

- Transmit master clock as modulation of optical carrier
 - Transmit RF by amplitude modulation of CW signal
 - Like cable TV transmission
- Measure link variation by Michelson interferometer using stabilized optical carrier.
 - Use heterodyne interferometer to avoid baseband phase drift.
 - High sensitivity by modulating optical phase to maintain constant number of optical wavelengths over fiber link.
 - Correct for different temperature coefficients of group and phase velocity by feeding forward an additional phase correction to RF
- Demodulate using photodiodes characterized for AM/PM conversion
 - High power diodes have a favorable characteristic
- Process RF signal using FPGA controller
 - RF components continuously calibrated.
 - Powerful processor can implement averaging and filter functions
 - Ready for integration into accelerator systems
- Phase lock remote client (laser, VCO, RF system) to reference clock.
 - Higher frequency reference more sensitive.
 - PLL implemented using FPGA controller.

Detailed results

ohn Bvi

RF distribution and and control device

- It is critical to precisely lock the remote client to the master
- All possible drift sources from the master to the client must be either actively compensated or thermally stabilized.
 - Thermal effects of cables and RF components are actively compensated via calibration signals
 - Group delay is compensated via feed-forward

LCLS: Initial Configuration

ohn Bv

Goal: Synchronize NEH and FEH lasers to a bunch arrival time diagnostic to allow time-stamping of each beam pulse. lui)

Initial configuration synchronizes phase cavity and one NEH laser (Ti:Sapph osc)

LCLS System

12 Oct, 2011

hn By

Larry Doolittle, ICALEPCS2011, Grenoble

- TX occupies half of standard rack.
- Each RX has a Synchhead and stabilizer chassis. S/H sits as close as possible to client.
- Fiber links are run in SMF28 in 12 fiber cables.

John Byrd

lmì

Synch/Head

Electronic side

Optical side

12 Oct, 2011

FPGA side (RF receiver on other side)

Optical Timing for Fermi@Elettract

- Stabilized links are used for distributing MO to RF stations. Each receiver also locks the RF amplitude and phase to the MO reference
- Performance is excellent. Beam jitter within spec (<75 fsec) with further improvement expected.

ohn Bvi

Extending to >20 km links

There are a few challenges to extending the links beyond the 2 km we have demonstrated with precision of <20 fsec.

- The wavelength of the optical carrier sets the scale for measuring the link
 - Extend optical coherence length to be longer than twice link length (100 Hz line width is available.)
 - Lock optical carrier frequency to better than 10⁻¹¹. Several demonstrated techniques.
 - Understand polarization mode dispersion effects.
- Number of channels limited only by available optical power at transmitter.
 - 32 channels demonstrated (Fermi@Elettra).
 - Individual channel signal power is below Raman backscattering limit.

Summary

- Femtosecond timing distribution is now a demonstrated technology available for present and planned accelerators.
- Systems have a firm basis in technology from telecomm and digital RF controllers.
- Close to demonstrating links >20 km.
- It is an exciting area and critical for the success of present and future FELs.
- New ideas and results every week....
- Thanks to colleagues at Berkeley, SLAC, DESY, Trieste, and elsewhere for many ideas and contributions.