DISTRIBUTED SYSTEM & NETWORK PERFORMANCE ROBERT PETKUS, WSLS-II CONTROLS 2011 CALEPCS, GRENOBLE, FRANCE MONITORING

OUTLINE

- NSLS-II control system environment
- Monitoring goals
- Splunk and Splunk Apps
 - Unix, Nagios, Snort
- sFlow and Cacti
- Putting it all together

NSLS-II CONTROL SYSTEM ENVIRONMENT

- Private network no email, web-surfing, cross-pollination w/campus net
 - SSH inbound to edge, web-proxy outbound
 - No direct path from internet to control network edge
 - Compliance with NIST standards
- Network segmented into VLANs (security, performance)
- Within the next 2 years the network will comprise
 - >150 network switches
 - >110 Linux IOC and infrastructure servers
 - >250 serial<->Ethernet console servers
 - Thousands of IP devices

MONITORING SOLUTION GOALS

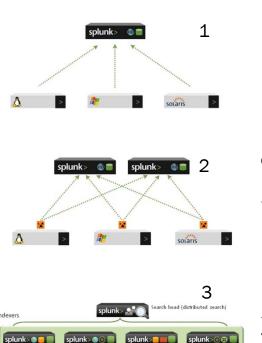
What should the system be capable of?

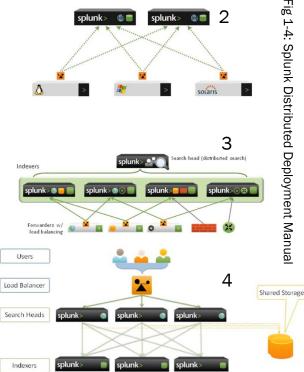
- Visualize assets => series of (preferably) integrated GUIs or Dashboards itemizing critical resources
 - Information should be reliable enough to second as an asset tracking system => e.g.,
 IRMIS back-ended
- Reliable => distributed, no single point of failure
- Alerts => provide display and email alert events created by any number of triggers (canned and custom)
- Troubleshooting resource => ability to timestamp and observe events in real-time for analysis and reveal interrelationships if and where they exist
- Introspection => debug end-to-end communication, QoS, real-time traffic analysis, packet logging, intrusion detection
- Documentation => retain a history of events and metrics for trending, audits, SLAs, funding justification, system performance, etc.
- Security => due diligence, cybersecurity compliance, "paper trail"

SPLUNK

- Splunk is a commercial software tool that monitors and indexes data inputs in real-time
- Data inputs can be file/directory logs, script output, TCP/UDP streams, or other Splunk instances
- Presents a customizable web-interface search engine supporting advanced queries and regular expressions
 - Searches can be performed that satisfy a variety of conditions including specific host, event, source, sourcetype, time range, and/or string
 - Searches can be distributed across multiple Splunk servers
 - Includes a IFX (interactive field extractor) => from search output, Splunk can create regexes for the user based on their interest
- Allows alert creation based on output from scheduled saved searches that can send an email and/or trigger script execution
- Includes a report builder that can generate sophisticated reports and charts in PDF format
- Support for custom apps and dashboards many freely available on SplunkBase, an online repository.
 - Apps maintain a consistent look and feel
 - We currently utilize apps for Unix, Snort, and Nagios

SPLUNK CONS

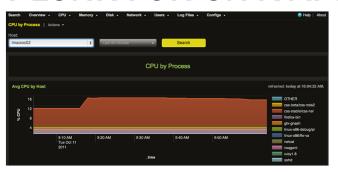

- Splunk is *expensive* and 1st time buyers forced to purchase a year of support
- The minimum license (500GB indexed data/day) can be breached easily if logs are particularly verbose (Unix for Splunk, IPTables)
 - Splunk license allows index volume violations for (5) consecutive days
 - A few days of a bad device spewing logs will not invalidate license
 - After (5) days Splunk stops indexing data until volume is brought in check
- Can't have more than (1) instance of free Splunk running as a distributed search client
- Requires decent hardware => best on 64-bit, multi-core, lots of RAM, RAID disks
- Definitely worth it if implemented sensibly

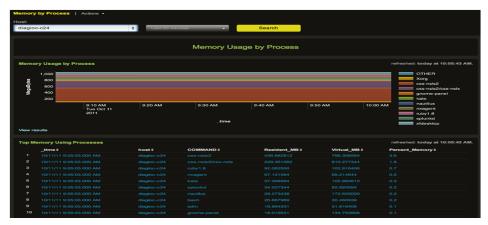


SPLUNK ARCHITECTURE

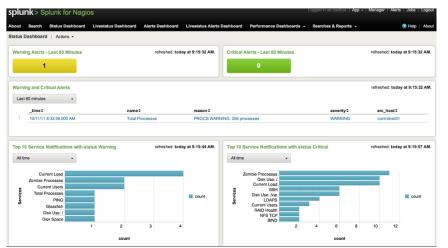
- Splunk performs (3) roles: 1) data ingestion, 2) indexing, 3) searching indexed data
- A single Splunk instance can fulfill all roles, however, larger deployments benefit from a distributed architecture
- Figure (1) illustrates a series of Splunk Forwarders which ingest and send data to an indexer
 - There are different forwarder types that can be configured
- Figure (2) illustrates load balancing wherein Splunk Forwarders send data to some or several indexers based on criteria or availability (failover)
- Figure (3) shows a search-only head node which distributes its search requests to load-balanced indexers
- Figure (4) demonstrates a pool of search head nodes which manages simultaneous search requests across many indexers

SPLUNK FOR UNIX APP


This app provides a dashboard with a stunning amount of information garnered from clientside shell scripts:


- System & service monitoring (vmstat, lsof, ps, auditd)
- File system integrity checker (what config files have been modified?)
- User logins over time, failed logins
- Network connection stats, TCP connection states
- Produces a copious amount of data
 - Quickly breach indexing limits on expensive license
- If your license is limited, better to use sparingly
 - Reserve for system/service profiling (is HW adequate, bottleneck root cause?)
 - Insight into utilization on multi-user systems
 - Throttle frequency of scans or eliminate commands that produce too much output (Isof)

SPLUNK FOR UNIX APP

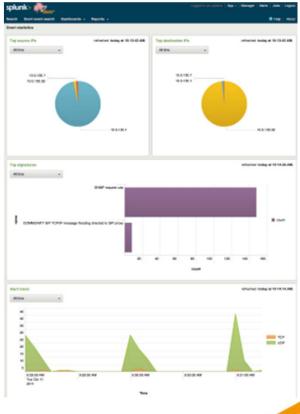

This app provides a dashboard with a stunning amount of information garnered from clientside shell scripts:

- System & service monitoring (vmstat, lsof, ps, auditd)
- File system integrity checker (what config files have been modified?)
- User logins over time, failed logins
- Network connection stats, TCP connection states
- Produces a copious amount of data
 - Quickly breach indexing limits on expensive license
- If your license is limited, better to use sparingly
 - Reserve for system/service profiling (is HW adequate, bottleneck root cause?)
 - Insight into utilization on multi-user systems
 - Throttle frequency of scans or eliminate commands that produce too much output (Isof)

SPLUNK FOR NAGIOS

Nagios®

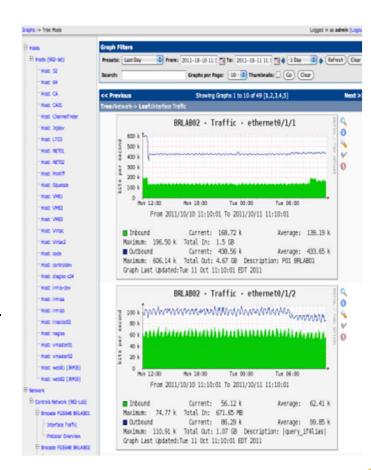
- Nagios is a robust open source monitoring application providing alerts and trending analysis on notifications, outages, and response
- Splunk does not replace but compliments Nagios
- Nagios is utilized in the controls group to monitor all infrastructure servers and services (BIND, DHCP, LDAP, environmentals with IPMI, web page content, etc.)
- Nagios is used to monitor EPICS IOCs and PVs
- Splunk for Nagios provides the following:
 - Scheduled Splunk queries can sent an alert to Nagios
 - ii. Integration of Nagios as a customizable Splunk dashboard
 - iii. Graphing of SNMP data (network bandwidth, CPU, memory, disk utilization)



SPLUNK FOR SNORT

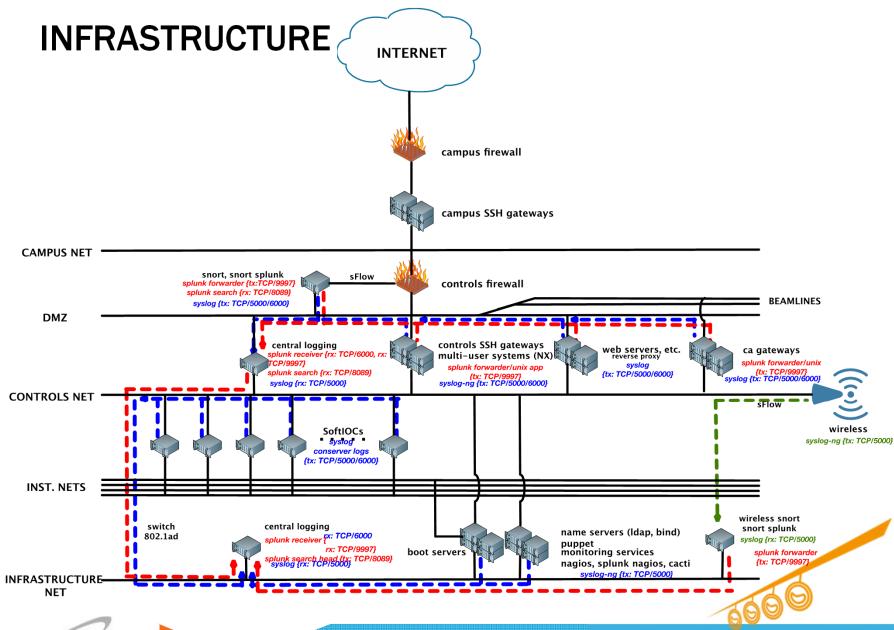
- Snort is an open source network intrusion detection system used for real-time packet inspection, logging, and content pattern matching.
 - Typically used to detect port scanning and incursions on the network by matching packet content against a known signature database
- Snort plays a role along the periphery of the control system network
 - Component of the wireless air defense (wireless will be available on a segment of the control network)
 - Intrusion detection on DMZ and gateway systems => attacks on Apache proxy
 - Traffic debugging
 - Traffic is streamed to Snort from either the local server interface (mirror port) or sFlow datagrams via a switch
- There are several GUIs available to view and parse Snort logs (BASE, SGUIL)
- We are using Splunk for Snort which provides a dashboard to view Snort logs
 - The app extracts fields from Snort logs (e.g., src/dst_ip, proto, signature, interface)
 - · Create saved searches, tags, and reports

SFLOW


- sFlow is enabled on key locations across the controls network for real-time traffic analysis
- sFlow is a packet sampling technology best suited for dense, high-speed networks
 - sFlow separates the packet sampling (embedded in switch/router) from analysis logic (separate server/device)
 - sFlow agents dispersed throughout the network stream datagrams to a central collector with minimal overhead allowing for sampling of multiple wire-speed 10G+ links (unlike NetFlow)
 - Overhead <.02%/10GbE link
- sFlow samples are processed by Snort for security
- sFlow samples fed into NTOP (via Cacti) and sFlowTools for introspection when debugging

CACTI

- Cacti is an open source web app (PHP) that polls network devices and stores/graphs the resulting dataset with RRDTool
- Typically used to graph hardware environmentals and switch port bandwidth over time
- Cacti has mature support for SNMPv3 and allows the creation of custom templates (XML) to parse specialized SNMP MIBs
 - We use custom templates for our Brocade and Moxa devices
- Supports multi-user LDAP authentication with granular permissions
- Splunk might replace some elements but Cacti is fast, reliable, free, and offers a distinctive view of the network



INTEGRATION

- (2) central Syslog-ng servers (expandable if needed) on DMZ and inside the control network
 - All system's syslog-ng.conf set-up to send (2) log streams (TCP) to both the central log and Splunk (TCP input)
- (1) primary Splunk indexer/search node receiving internal log-streams from Syslog-ng
 - Secondary Splunk indexers on DMZ and Snort servers
 - Splunk lightweight forwarders on CA GWs and select systems
- Snort services monitoring Wi-Fi, gateway, web proxies, etc., fed from sFlow or local interfaces
- Net-SNMP v3 (SHA/AES) on all servers w/traps on Cacti/Nagios
 - Interface stats and chassis environmentals polled via SNMPv2 and fed into EPICS
- Nagios NRPE client installed on all servers
- Splunk Apps glue together most elements in a single coherent dashboard
- Puppet configuration management software ensures package installation and autoconfigures all Linux systems (infrastructure & softIOC) for a hands-free deployment

icalepcs 2011

RESOURCES

- Splunk: http://www.splunk.com/
- SplunkBase (Repository for Splunk Apps): http://splunk-base.splunk.com/apps/
- Syslog-ng: http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/
- Net-SNMP: http://www.net-snmp.org/
- Cacti: http://www.cacti.net/
- Nagios: http://www.nagios.org/
- Snort: http://www.snort.org/
- sFlow: http://www.sflow.org/
- sFlowTrend: http://www.inmon.com/products/sFlowTrend.php

