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1.Control Theory

Objective:

The course on control theory  is concerned with the analysis and design of closed loop 

control systems.

Analysis:

Closed loop system is given           determine characteristics or behavior

Design:

Desired system characteristics or behavior are specified          configure or synthesize closed 

loop system

Plant

sensor

Input 

Variable
Measurement of 

Variable

Variable

Control-system components
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1.Introduction

Definition:

A closed-loop system is a system in which certain forces (we call these inputs) are 

determined, at least in part, by certain responses of the system (we call these outputs).

System

inputs 

System

outputs 

Closed loop system 

O O
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Definitions:

�The system for measurement of a variable (or signal) is called a sensor.
�A plant of a control system is the part of the system to be controlled.

�The compensator (or controller or simply filter) provides satisfactory  

characteristics for the total system.

Two types of control systems:

�A regulator maintains a physical variable at some constant value in the

presence of perturbances.

�A servomechanism describes a control system in which a  physical variable is       

required to follow, or track some desired time function (originally applied in order 

to control a mechanical position or motion).

System 
input Error

Plant

Sensor

Manipulated 

variable

Closed loop control system

System 
output

Compensator+

1.Introduction
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1.Introduction

Example 1:  RF control system

Goal:

Maintain stable gradient and phase.

Solution:

Feedback for gradient amplitude and phase.

Phase detector

~~

+

-

Phase 

controller

amplitude

controller Klystron cavity

Gradient

set point

Controller
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1.Introduction

Model:

Mathematical description of input-output relation of components combined with block 

diagram.

Amplitude loop (general form):

Klystron

cavity

amplifier

controllerReference

input output
RF power

amplifier

Monitoring 

transducer

_

Gradient detector

plant+
error
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1.Introduction

RF control model using “transfer functions”

A transfer function of a linear system is defined as the ratio of the Laplace   

transform of the output and the Laplace transform of the input with I. C .’s =zero.

Input-Output Relations

Transfer FunctionOutputInput

U(s) Y(s) P(s)K(s)G(s) =

E(s) Y(s)

Y(s)

(s)G(s)HL(s) c=

R(s) L(s)L(s)M(s))1(T(s)
1−+=

Gradient detector

Klystron

cavity

controller

Reference  input

Error

Output

_

Control input

P(s)K(s)
R(s)

M(s)

Y(s)E(s)

U(s)

+ ( )sHc
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1.Introduction

Example2:  Electrical circuit

Differential equations:

( ) (t)V dττi
C

 i(t)R i(t)R

t

1

0

21

1
=++ ∫

( ) (t)V dττi
C

 i(t)R

t

2

0

2

1
=+ ∫

Laplace Transform:

(s)VI(s)
Cs

1
 I(s)R I(s)R 121 =

⋅
++

(s)VI(s)
Cs

1
 I(s)R 22 =

⋅
+

Transfer function:

1s)CR(R

1sCR

(s)V

(s)V
G(s)

21

2

1

2

+⋅+

+⋅⋅
==

(t)V1
(t)V2

i(t) 1R

2R

C

1 VInput       ,output   
2V
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1.Introduction

Example 3: Circuit with operational amplifier

+-

.

sCR

1sCR

(s)V

(s)V
G(s)

1

2

i

0

⋅⋅

+⋅⋅
−==

It is convenient to derive a transfer function for a circuit with a single operational 

amplifier that contains input and feedback impedance:

+-

(s)Z f

(s)Z i

I(s)

(s)Vi (s)Vo

.

iV
oV

1i 1R 2R C

(s)  IR(s)V 11i = (s)I
Cs

1
R(s)V 12o 









⋅
+−=and

(s) I(s) Z(s)V ii =
(s)Z

(s)Z

(s)V

(s)V
G(s)

i

f

i

o −==(s) I(s)Z(s) V fo −=and
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Model of Dynamic System

We will study the following dynamic system:

y(t)

u(t)

γ k

1m =

Parameters:

: spring constant

: damping constant

: force

Quantity of interest:

: displacement from equilibrium 

k
γ
u(t)

y(t)

Differential equation: Newton’s third law

( ) ( ) ( ) ( )tutyγ tk yFty ext +−−==∑ &&&

( ) ( ) ( ) ( )
 

tutk ytyγty =++ &&&

( ) ( ) 00 y0y , y0y && ==

( )1m =

�Equation is linear  (i.e. no      like terms).

�Ordinary (as opposed to partial e.g.                                       )

�All coefficients constant: 

( ) 0x,tf
tx

  =
∂

∂

∂

∂
=

( ) ( ) γ tκ ,γt k ==

2y&

for all t
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Model of Dynamic System

Stop calculating, let’s paint!!!

Picture to visualize differential equation

1.Express highest order term (put it to one side)

( ) ( ) ( ) ( )tutyγ tk yty +−−= &&&

2.Putt adder in front

3.Synthesize all other terms using integrators!

( )tu ( )ty&&

( )tk y−
( )tyγ &−

+

Block diagram

+

-
-

( )tu ( )ty& ( )ty

γ

k

( )ty&&
∫ ∫
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2.1 Linear Ordinary Differential Equation (LODE)
General form of LODE:

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )t ubtu b...t ubt yaty a...t yaty 01

m

m01

1n

1n

n +++=++++ −
−

&&

m ,n Positive integers, m01n10 ,...,b, b,...,a,aa − real numbers.

Mathematical solution: hopefully you know it

Solution of LODE: ( ) ( ) ( ),tytyty ph +=

( )( ) ( )( ) ( ) ( ) 0t yaty a...t yaty 01

1n

1n

n =++++ −
−

&

Sum of homogeneous solution             (natural response) solving( )tyh

And particular solution            . ( )ty p

How to get natural response           ?  Characteristic polynomial( )tyh

( )

( ) ( ) ( )

( ) ( )  tλ

n

 tλ

1r

 tλ1r

r21h

n1r

 r

1

01

1n

1n

n

n1r1 ec...ec e tc... tccty

0λλ...λλλλ

0aλaλaλλχ

++++++=

=−⋅⋅−⋅−

=+++=

+

+
−

+

−
−

( )ty p ( )tuDetermination of               relatively simple, if input            yields only a finite number of 

independent  derivatives. E.g.: ( ) .t, βetu r

r

ξt≅

;nm ≤ coefficients
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2.1Linear Ordinary Differential Equation (LODE)

Most important for control system/feedback design:

In general: given any linear time invariant system described by LODE can be 

realized/simulated/easily visualized in a block diagram

( ) ( )( ) ( ) ( )( ) ( ) ( )t ubtu b...t ub y(t)aty a...t yaty 01

m

m01

1n

1n

(n) +++=++++ −
−

&&

( )2, m2n ==

Control-canonical form

+

--

( )tu

1a

0a

2x
0b

( )ty

2b

1b

1x

+

+ +

∫∫

Very useful to visualize interaction between variables!

What are     and       ????1x
2x

More explanation later, for now: please simply accept it!
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2.2 State Space Equation

Any system which can be presented by LODE can be represented in State space 

form (matrix differential equation).

Let’s go back to our first example (Newton’s law):

One LODE of order n transformed into n LODEs of order 1

What do we have to do ???

( ) ( ) ( ) ( )tutk ytyγ ty =++ &&&

1. STEP:

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )tutγ xtk x                

tutyγ tk ytytx

txtytx

21

 

2

2

  

1

+−−=

+−−==

==

&&&&

&&

Deduce set off first  order differential equation in variables

(so-called states of system)

Position :

Velocity :         :

( )tx j

( ) ≅tx1

( ) ≅tx2

( )ty

( ) ty&
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2.2 State Space Equation

2. STEP:

Put everything together in a matrix differential equation:

( ) ( ) ( )  tD utC xty +=

Measurement equation

( )
( )

( )
( )

( )t u
1

0

tx

tx
 

-k   - γ

1       0

tx

tx

2

1

2

1









+
















=









&

&

State equation

( ) ( ) ( )   tB utA xtx +=&

( ) [ ]
( )
( )

 
tx

tx
 0  1ty

2

1









=

Definition:

The system state      of a system at any time     is the “amount of information” that, 

together with all inputs for         , uniquely determines the behaviour of the system 

for all         .

0t

0tt ≥

0tt ≥

x
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2.2 State Space Equation
The linear time-invariant (LTI) analog system is described via

Standard form of the State Space Equation

Variable Dimension Name

state vector

system matrix

input matrix

input vector                  

output vector

output matrix

matrix representing direct coupling 

between input and output

( )tX

B

( )tu

( )ty

C

D

Declaration of variables

( ) ( ) ( )tB utA xtx +=& State equation

( ) ( ) ( ) tD utC xty += State equation

( )
( )

( )
 .

tx

  

tx

tx

n

1

















⋅⋅⋅=Where        is the time derivative of the vector ( )tx&

System completely described by state space matrixes                   ( in the most cases          ). A, B, C, D 0D =

1n×
nn×

rn×

1r ×
1p×
np ×

rp×

And starting conditions ( )0tx
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2.2 State Space Equation

Why all this work with state space equation? Why bother with?

( ) ( ) ( )
( ) ( ) ( )  tD utC xty

  tB utA xtx

+=

+=&

with e.g. Control-Canonical Form (case                      ):

[ ] 3210

210

b , D b bb , C

1

0

0

 , B

a  a  a

 1       0       0   

0       1       0   

A ==

















=

















−−−

=

or Observer-Canonical Form:

[ ] 3

2

1

0

2

1

0

b ,D1  0  0 ,C

b

b

b

 ,B

a  1  0

a  0  1

a  0  0

A ==

















=

















−

−

−

=

Notation is very compact, But: not unique!!!

Computers love state space equation! (Trust us!)

Modern control (1960-now) uses state space equation.

General (vector) block diagram for easy visualization.

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )t ubtu b...t ubt yaty a...t yaty 01

m

m01

1n

1n

n +++=++++ −
−

&&

BECAUSE: Given any system of the LODE form

Can be represented as 

3 ,m3n ==
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2.2 State Space Equation

Block diagrams:
Control-canonical Form:

+
-

-( )tu

1a
0a

2x
0b

( )ty

2b
1b

1x +

+

+

∫ ∫

Observer-Canonical Form:

+

-

( )tu

1a0a

1x

2b

y(t)

0b
1b

2x
+

+
+ +

-

+
∫ ∫
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2.2 State Space Equation

Now: Solution of State Space Equation in the time domain. Out of the hat…et voila:

( ) ( ) ( ) ( ) ( ) dττt B uτΦ0 xtΦtx
t

0
−+= ∫

 

 

Natural Response  +  Particular Solution

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )tD u dττt B uτΦC0 xtC Φ      

tD utC xty

 t

0 
+−+=

+=

∫
With the state transition matrix

( ) A t3
3

2
2

e...t
!3

A
t

!2

A
AtItΦ =++++=

( ) ( )

( )
( ) ( ) ( )

( ) ( )tΦt.Φ4

tΦtΦtt.Φ3

I0.Φ2

tA Φ
dt

tdΦ
.1

1

2121

−=

⋅=+

=

=

−

Exponential series in the matrix A (time evolution operator) properties of           (state transition matrix).( )tΦ

Example:

( ) A t2 e
1  0

   t1
AtIt, Φ

0  0

0  0
A

0  0

1  0
A =








=+=








=⇒








=

Matrix A is a nilpotent matrix.
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2.3 Examples

It is given the following differential equation:

( ) ( ) ( ) ( )t u2t y3ty
dt

d
4ty

dt

d
2

2

=++

Example:

�State equations of differential equation:

Let                                                 . It is:( ) ( ) ( ) ( )tyt  and  xtytx
 

21
&==

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )t u2t x4t x3tx

t u2t x3t x4tx

txtytx

212

122

21

+−−=

=++

==

&

&

&&

�Write the state equations in matrix form:

Define system state                           Then it follows: ( )
( )
( )

 . 
tx

tx
tx

2

1









=

( ) ( ) ( )

( ) [ ] ( )t x0  1ty

t u
2

0
t x

   4  3-

1      0 
tx

=









+









−
=&
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2.3 Cavity Model









+⋅=⋅+⋅+

==

+′=⋅+⋅+⋅

bg2/1L

2

02/1

L

0

L

2/1

bg

L

II
m

2
ωR2UωUω2U

Q2

ω

CR2

1
:     ω

    IIU
L

1
U

R

1
UC

&&&&&

&&&&&

circulator

Equivalent circuit:

~

Generator
'

gI extR

Resonator

~
bI

'

gI
rI bI

C

oR
L

~

.

.

. .

.

~

Coupler 1:m

Generator 

Resonator  

Last
Beam-Current

gI

gI

oZ

oZ

oZ

bI

bI

C

oR

L

Conductor Conductor
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2.3 Cavity Model

Only envelope of rf (real and imaginary part) is of interest:

Neglect small terms in derivatives for U and I

Envelope equations for real and imaginary component.

( ) ( ) ( )( )

( )( )

( ) ( )( ) ( ) ( )( ) dttiItIω  dt tIitI

(t))iU(t)(UωtUiUω2

tiUtUωtUiU

2

1

2

1

t

t

irHF

t

t

ir

ir

2

HFrr2/1

ir

2

HFir

∫∫ +<<+

+<<+

+<<+

&&

&&

&&&&

( )

( ) 







+⋅








=⋅−⋅+









+⋅








=⋅+⋅+

i0bgiHFri2/1i

r0bgrHFir2/1r

II
m

1

Q

r
ωU∆ωUωtU

II
m

1

Q

r
ωU∆ωUωtU

&

&

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ti ωexpti ItI2ti ωexpti ItItI

ti ωexpti ItItI

t)(i ωexpti UtUtU

HFi0br0bHF ib rbb

HFgigrg

HFir

⋅+=⋅+=

⋅+=

⋅+=

ωω
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2.3 Cavity Model

Matrix equations:

( )

( )

( )
( )

( ) ( )

( ) ( )


















+

+

⋅







⋅







+







⋅








−

−−
=













tItI
m

1

tItI
m

1

1  0

0  1

Q

r
ω

tU

tU

ω  ∆ ∆ω  

∆ω   ω

tU

tU

i0bgi

r0bgr

HF

i

r

2/1

2/1

i

r

&

&

With system Matrices:









⋅







=









−

−−
=

1  0

0  1

Q

r
ω      B           

ω  

∆ω  ω
A HF

2/1

2/1

    ω∆

( )
( )
( )

( )
( ) ( )

( ) ( )


















+

+

=







=

tItI
m

1

tItI
m

1

tu                      
tU

tU
tx

i0bgi

r0bgr

i

r rr

General Form:

( ) ( ) ( )tuBtxAtx
rr&r ⋅+⋅=
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2.3 Cavity Model

Solution:

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )





 −
=

′′⋅⋅−+⋅=

−

∫

∆ωtcos      ∆ωtsin

∆ωtsin   ∆ωtcos
eΦ(t)

t dtuBt'tΦ0xtΦtx

 tω

t

0

2/1

rrr

Special Case:

( )
( ) ( )

( ) ( )

( )
( )

( ) ( )
( ) ( ) 








⋅















 −
−⋅







 −
⋅

+










=
















=

















+

+
=

−

i

r tω

2/1

2/1

22

2/1

HF

i

r

i

r

i0bgi

r0bgr

I

I
e

∆ωtcos       ∆ωtsin

∆ωtsin   ∆ωtcos
1

∆ω       ω

∆ω   ω

∆ωω

Q

r
ω

tU

tU

I

I
:

tItI
m

1

tItI
m

1
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r



26

2.3 Cavity Model

Gain 2

Harmonic oscillator

s

1

Integrator
+

s

1

4

3

Gain 1

Scope 

Integrator 1Step Gain

2

- -

Step 
State space

Scope 
BuAxx +=′

DuCxy +=

Harmonic oscillator

Scope 

Step 

BuAxx +=′

DuCxy +=

State space

Step 

Load Datacavity
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2.3 Cavity Model

s

1

Integrator
+

s

1

12w

dw

Gain 2

Gain 4

Scope 

Integrator 1

Step Gain

k
- -

dw

Gain 5

+

- +Step 1 

12w

Gain 3

Load Data
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2.4 Masons Rule

Mason’s Rule is a simple formula for reducing block diagrams. Works on continuous and 

discrete. In its most general form it is messy, but  For special case when all path touch

( )
( )∑

∑
=

gainsloop path -1

th gainsforward pa
H(s)

Two path are said to touch if they have a component  in common, e.g. an adder.

� Forward path:  F1: 1 - 10 - 11 - 5 – 6

F2: 1 - 2 - 3 - 4 - 5 – 6

Check: all path touch (contain adder between 4 and 5)

( ) ( )
( ) ( )

( )

342

2153

342

32135

21

21

HHH1

HHHH

HHH1

HHHHH

lGlG1

fGfG
H

−−

+
=

−−

+
=

−−

+
=

1U
1H

4H

10 11

2 3 4 5 6

789

5H

3H
2H

Y

( )
( )
( )
( ) 32

421

3212

351

HIG

HHIG

HHHfG

HHfG

=

=

=

=

 

  

 

� By Mason’s rule:

� Loop path :      I1: 3 - 4 - 5 - 8 – 9

I2 :  5 - 6 - 7
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2.5 Transfer Function G (s)

Continuous-time state space model

( ) ( ) ( )
( ) ( ) ( )tD utC xty

tB utA xtx

+=

+=& State equation

Measurement equation

Transfer function describes input-output relation of system.

( ) ( ) ( ) ( )sB UsA X0xss X +=−

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )s B Usφ0 xsφ         

sB UAsI0xAsIsX
11

+=

−+−=
−−

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )sD Us B UsC φ0 xsC φ      

sD]UBAsI[c0]xAsIC[      

sD UsC XsY

11

++=

+−+−=

+=
−−

( ) ( ) ( ) D BsC φDBAsICsG
1

+=+−=
−

System( )sU ( )sY

Transfer function             ( pxr ) (case: x(0)=0):( )sG
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2.5 Transfer Function

Transfer function  of TESLA cavity including 8/9-pi mode

( )

( )

( )

( ) 















+∆

∆−+







 ++

−=−
π/

π/

π/
π

π/

π ω        s  

    ωs

ωs∆ω

ω

(s)  Hπ

9

8
21

9

8

9

8
9

8
21

2

9

8
21

2

9

8

9

8
21

9

8           mode
9

8

π

π

ω

ω

( ) ( ) ( ) ( )sHsHsHs H
π

9

8πcavcont +=≈

( ) ( )
( )( )

( )
( ) 











+−

−+

++
=−

π/π

ππ/

π/π

/
π

ω         s∆ω 

∆ω     ωs

ωs∆ω

πω
s     Hπ

21

21

2

21

2

21        mode
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2.5 Transfer Function of a Closed Loop System

( )sR ( )sE ( )sU ( )sY( )sHc
( )sG

( )sM

-

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )s Ys MsLs RsL        

s YsMsRs HsG        

s Es HsGs UsG sY

c

c

−=

−=

==

 

We can deduce for the output of the system.

( ) sLWith         the transfer function of the open loop system (controller plus plant).

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
( ) ( )s RsT                

s RsLs MsLIsY          

s RsLs Ys MsLI          

1

=

+=

=+
−

( ) sT is called : Reference Transfer Function
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2.5 Sensitivity

System characteristics change with system parameter variations

The ratio of change in Transferfunction T(s) by the parameter b can be defined as:

The sensitivity function is defined as:

T(s)

b

b

T(s)

T(s)

b

∆b

∆T(s)
limS

0∆b

T

b
∂

∂
==

→

Or in General sensitivity function of a characteristics W with respect to the parameter b:

W

b

b

W
SW

b
∂

∂
=

Example: plant with proportional feedback given by ( ) pc KsG = ( )
1.0s

K
sGp

+
=

Reference transfer function T(s): ( )
( )
( ) kpp

pp

HsGK

sGK
sT

+
=

1

( )
( )
( ) ωω

ω
ω

jK..

K.

HjGK

HjGK
jS

p

p

kpp

kppT

H
++

−
=

+

−
=

25010

250

1

Kp=10

Kp=1

|S|

omega
Increase of H results in decrease of T

� System cant be insensitive to both H,T

∆b

b

T(s)

∆T(s)
S =
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2.5 Disturbance Rejection

Disturbances are system influences we do not control and want to minimize its 

impact on the system.

( )

D(s)(s)TR(s)T(s)

D(s)
H(s)(s)G(s)G1

(s)G
R(s)

H(s)(s)G(s)G1

(s)G(s)G
sC

d

pc

d

pc

pc

⋅+⋅=

⋅⋅+
+

⋅⋅+

⋅
=

To Reject disturbances, make                     small!  ( )sDTd ⋅

)(sGc

)(sGd

Plant

R(s)

D(s)

)(sGp

H(s)

C(s)

� Reduce the Gain                between dist. Input and output

� Increase the loop gain                              without increasing the gain              .Usually 
accomplished by the compensator choice  

� Reduce the disturbance magnitude         should always be attempted if reasonable

� Use feed forward compensation, if disturbance can be measured.

( )ωjGd
( )ωω jGpjGc )(

( )ωjGc
( )ωjGd

( )td

� Using frequency response approach to    

investigate disturbance rejection

� In general                cant be small for all -

Design                 small for significant 

portion of system bandwidth

( )ωjTd

ω( )ωjTd
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2.6 Stability

Now what do we know:

The impulse response tells us everything about the system response to any arbitrary 

input signal  u(t) .

what we have not learnt:

If we know the transfer function G(s), how can we deduce the systems behavior? 

What can we say e.g. about the system stability?

Input never exceeds        and output never exceeds          then we have BIBO 

stability!

Note: it has to be valid for ALL bounded input signals!

 ,M 2
 M1

A linear time invariant system is called to be BIBO stable (Bounded-input-bounded-output)

For all bounded inputs                      (for all t) exists a boundary for the output signal 

So that                     (for all t) with        and           positive real numbers.

( )   Mtu 1≤
( )  .Mty 2≤

 ,M 2

 M1
 ,M 2

Definition:
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2.6 Stability

BIBO-stability has to be shown/proved for any input. Is is not sufficient to show 

its validity for a single input signal!

Example: integrator    ( ) ( ) ( ),  s UsGs Y = ( )  
s

1
s G =

1.Case

The bounded input signal causes a bounded output signal.

2.Case

( ) ( ) ( )

( ) ( )[ ] 1
s

1
L sYL ty

1s,  Utδt u

11 =





==

==

−−

( ) ( )

( ) ( )[ ] t
s

1
L sYL ty

s

1
s,  U1tu

2

11 =





==

==

−−
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2.6 Stability

Condition for BIBO stability:

( ) ( ) ( )s UsGs Y =

We start   from the input-output relation

By means of the convolution theorem we get

( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫
∞

≤≤−≤−=
t

0 0
21

t

0
M dτ τ gM dτ τtuτg  dττt uτg t y  

( )∫
∞

∞<
0

dt t g

Therefore it follows immediately:

If the impulse response is absolutely integrable

Then the system is BIBO-stable.
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2.7  Poles and Zeroes

Can stability be determined if we know the TF of a system?

( ) ( )
[ ]

( ) DB
sχ

AsI
CD BsC ΦsG

 adj
+

−
=+=

( ) ( )
( )

( )
( )sD

sN

ps

zs
αsg

ij

ij

l

n

1l

k

m

1k
ij =

−∏

−∏
⋅=

=

=

Coefficients of Transfer function  G(s) are rational functions in the complex variables

What do we know about the zeros and the poles?

Since numerator           and  denominator            are  polynomials   with real coefficients, 

Poles and zeroes must be real numbers or must arise as complex conjugated pairs!

( )sN ( )sD

kz
lp α nm ≤Zeroes.     Poles,      real constant, and it is               (we assume common factors have

already been canceled!)
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2.7 Poles and Zeroes

( )B AsICadj −

Stability directly from state-space

Assuming D=0 (D could change zeros but not poles)

Assuming there are no common factors between the poly                            and 

i.e. no pole-zero cancellations (usually true, system called “ minimal” ) then we can identify

( ) ( ) DBAsICscall : HRe
1

+−=
−

( ) ( )
( )

( )
( )sa

sb

AsIdet

BAsICadj
sH =

−

−
=

( )AsIdet −

( ) BAsICadjb(s) −=

( ) ( )AsI detsa −=

and

i.e. poles are root of ( )AsI det −

iλ th
iLet        be the        eigenvalue of A

=>≤  forall i0}{λRe iif System stable

So with computer, with eigenvalue solver, can determine system stability directly from coupling matrix A.
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2.8 Stability Criteria

Several methods are available for stability analysis:

1.Routh Hurwitz criterion

2.Calculation of exact locations of roots

a. Root locus technique

b. Nyquist criterion

c. Bode plot

3.Simulation (only general procedures for nonlinear systems)

� A system is BIBO stable if, for every bounded input, the output remains bounded with 

Increasing time.

� For a LTI system, this definition requires that all poles of the closed-loop transfer-function

(all roots of the system characteristic equation) lie in the left half of the complex plane.

� While the first criterion proofs whether a feedback system is stable or unstable, 

the second Method also provides information about the setting time (damping term).
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2.8 Poles and Zeroes

Medium oscillation 

Medium decay

X XX

X

X

No Oscillation 

Fast Decay

X

X

X

X
No oscillation

No growth

Fast oscillation 

No growth 

Medium oscillation

Medium growth

ω(s)Im =

σ(s)Re =

No oscillation

Fast growth

Pole locations tell us about impulse response i.e. also stability:
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2.8 Poles and Zeroes

Furthermore: Keep in mind the following picture and facts!

�Complex pole pair: Oscillation with growth or decay.

�Real pole: exponential growth or decay.

�Poles are the Eigenvalues of the matrix A.

�Position of zeros goes into the size of ....c j

� In general a complex root must have a corresponding conjugate root ( N(s), D(S) polynomials

with real coefficients.
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2.8 Bode Diagram

Phase Margin
mφ

0
0

0
180−

Gain Margin

dB

mG

The closed loop is stable if the phase of the unity crossover frequency of the OPEN LOOP 

Is larger than-180 degrees.

ω

ω
1ω

2ω

2ω 1ω

090−
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2.8 Root Locus Analysis

Definition: A root locus of a system is a plot of the roots of the system characteristic

equation (the poles of the closed-loop transfer function) while some parameter of the

system (usually the feedback gain) is varied.

( )
( ) ( ) ( )321 ps ps ps

K
sK H

−−−
=

XXX

1p2p
3p

( ) ( )
( )

( ) .0sK H1roots at 
sK H1

sK H
sG CL =+

+
=

How do we move the poles by varying the constant gain K?

( )sR ( )sY

-

+
( )sHK
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2.8 Root Locus Examples

X

1p

1ps

1

−
X

1p

( ) ( )21 psps

1

−−  

X

2p

X

1p

( ) ( )21

1

psps

zs

−−

−

 

X

2p
O

1z

X

1p

( ) ( )21

1

psps

zs

−−

−

 

X

2p
O

1z

(a)
(b)

(c)
(d)
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X

1p

( ) ( ) ( )321 pspsps

1

−−−   

X

2p
X

3p
X

1p

( ) ( ) ( )321 pspsps

1

−−−   
X

2p

X

3p

( ) ( ) ( )321 pspsps

1

−−−   

X

1p

X
2p

X

3p

( ) ( ) ( )321

1

pspsps

zs

−−−

−

  

OX

2p
X

3p
1z

X

1p

2.8 Root Locus Examples (Cnt’d)

(e) (f)

(g)
(h)
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3.Feedback

The idea:

Suppose we have a system or “plant”

We want to improve some aspect of plant’s performance by observing the output 

and applying a appropriate “correction” signal. This is feedback

plant

“open loop”

“closed loop”
plant

?

Ufeedback

r

Question: What should this be?
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3.Feedback

Open loop gain:

Closed-loop gain:

G(s)
U Y

( ) ( )
1

O.L

y

u
sGsG

−









==

G(s) H(s)1

G(s)
(s)G

C.L

+
=

( )

( )G H1

G

u

y
          G Hy      G u               

G uG Hy               G uG u               

uuGoof: yPr

yfb

fb

+
=⇒−=

=+⇒−=

−=

“closed loop”

U
G(s)

Y

)(sH

fbU
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3.1 Feedback-Example 1

Consider S.H.O with feedback proportional to x i.e.:

Then

( ) u xαωxγ x
2

n =+++==> &&&

Same as before, except that new “natural” frequency  αω2

n +

Where

++++
S

1

s

1
y

2

nω

α

U

-
-

-

x&& x& x

γ

( ) ( )tα x t u

uuxωxγ x

fb

fb

2

n

−=

+=++ &&&

α xuxωxγ x
2 

 n −=++ &&&
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3.1 Feedback-Example 1

So the effect of the proportional feedback in this case is to increase the bandwidth 

of the system

(and reduce gain slightly, but this can easily be compensated by adding a constant gain in front…) 

)log(ωωωω2

n

1

ωωωω

αααα++++ωωωω2

n

1

n ωlog αω log 2

n +

DC response: s=0

dB

( )
( )αωγ ss

1
sG

2

n

2

C.L.

+++
=Now the closed loop T.F. is:

( ) iωG
O.L.

( ) iωGC.L.
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3.1 Feedback-Example 2

( ) ( ) dτ τxαtu

t

0

fb ∫−=

( )∫−=++
t

0

2

n  dττxαu xωxγ xi.e   &&&

Differentiating once more yields: uα xx ωxγ x
2

n
&&&&&&& =+++

No longer just simple S.H.O., add another state 

In S.H.O. suppose we use integral feedback:

++++
S

1

s

αααα

-
-

-

y

2

nω

U x&& x& x

γ

S

1
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3.1 Feedback-Example 2

( )

( )

( ) αωγsss

s
           

αωγss

1

s

α
1

ωγss

1

sG

2

n

2

2

n

2

2

n

2
C.L.

+++
=










+++








+

++
=

Observe that

1.

2. For large s (and hence for large     )

( )00G
C.L. =

ω

( )
( )

( )sG
ωγ ss

1
sG O.L.

2

n

2

C.L. ≈
++

≈dB

2

nω

1

( )iωG
O.L.

( )iωGC.L.

)log(ωωωω

So integral feedback has killed DC gain

i.e system rejects constant disturbances
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3.1 Feedback-Example 3

Suppose S.H.O now apply differential feedback i.e.

( ) ( )txα tu fb
&−=

( ) uxωx αγx
2

n =+++ &&&
Now have

So effect off differential feedback is to increase damping

++++

αS

-
-

-

xα &

S

1

2

nω

x&& x& x

γ

S

1

x
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3.1 Feedback-Example 3

dB

2

nω

1

( )iωG
O.L.

)log(ωωωω

( )iωGC.L.

Now ( )
( ) 2

n

2

C.L.

ω sαγs

1
sG

+++
=

So the effect of differential feedback here is to “flatten the resonance” i.e. damping is increased.

Note: Differentiators can never be built exactly, only approximately.
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3.1 PID controller

(1) The latter 3 examples of feedback can all be combined to form a 

P.I.D. controller (prop.-integral-diff).

 ldpfb uuuu ++=

(2) In example above S.H.O. was a very simple system and it was clear what     

physical interpretation of P. or I. or D. did. But for large complex systems not 

obvious

� Require arbitrary “ tweaking”

That’s what we’re trying to avoid

S.H.O+

/sKsKK lDp ++

P.I.D controller

-

yx =u
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For example, if you are so smart let’s see you do this with your P.I.D. controller:

Damp this mode, but leave the other two modes undamped, just as they are.

This could turn out to be a tweaking nightmare that’ll get you nowhere fast!

We’ll see how this problem can be solved easily.

G

ω

6th order system

3 resonant poles

3 complex pairs

6 poles

3.1 PID controller
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3.2 Full State Control

Suppose we have system

( ) ( ) ( )
( ) ( )tC xty

tB utA xtx

=

+=&

Since the state vector x(t) contains all current information about the system the

most general feedback makes use of all the state info.

-k x   

xk.....xku nnfb

=

−−−= 11

Where  (row matrix)  [ ] ......kk  k n1=

Where  example: In S.H.O. examples

Proportional fbk : 

Differential fbk : 

[ ]

[ ]ddd

ppp

  k xku

 k xk u

0

0

−=−=

−=−=

&
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3.2 Full State Control
Theorem: If there are no poles cancellations in

( ) ( )
( )

( ) BAsIC
sa

sb
sG

1

O.L.

−
−==

[ ]

( )
0

1n

1n

n

0

1n

1n1O.L.

n

1

1n- 0

n

1

1n-0n

1

a...sas

b...sb
BAsIC G

x

...

...

x

 b...  ...  by

 u

1

...

0

0

  

x

...

...

x

  

.   -a  ...   ..-a

1...         ...   0 

....     ..    ...   0 

0      ...   1    0 

x

...

...

x

+++

++
=−=



















=



















+





































=



















−
−

−
−−

O.L.A

Then can move eigen values of                 anywhere we want using full state feedback.BKA−

Proof:

Given any system as L.O.D.E. or state space it can be written as:

B

Where
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3.2 Full State Control

i.e. first row of O.L.
A Gives the coefficients of the denominator

( ) ( )

[ ]



















++

=



















−



















=

−=

+++=−=

−

−
−

)k -(a   ...    )   ...   k-(a

1    .         ..      ..         .0      

    ....         ..      ..         .0      

0                     ...1         0      

 k ...  ... k 

1

...

0

0

..  -a  ...    .-a

1..        ...   .0  

..     ...   ...   .0  

0    ...    1    0  

BKAA

Now

a...sasAsIdetsa

1n1n-00

1n-0

1n-0

O.L.C.L.

0

1n

1n

nO.L.O.L.

So closed loop denominator

( ) ( )
( ) ( )1n1n

1n

00

n

C.L.C.L.

ka...skas             

AsIdetsa

−−
− +++++=

−=

Using              have direct control over every closed-loop denominator coefficient 

� can place root anywhere we want in s-plane.

Kxu −=
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3.2 Full State Control

Example: Detailed block diagram of S.H.O with full-scale feedback

++++
- -

-

+ 2k

1k

u
S

1

2

nω

x&& x& x

γ

x

y

x&

Of course this assumes we have access to the       state, which we actually

Don’t in practice. 

x&

However, let’s ignore that “ minor” practical detail for now.

( Kalman filter will show us how to get       from       ).x& x

S

1
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3.2 Full State Control

With full state feedback have (assume D=0)

B+ +
s

1
C

A

K

kxu fb −=

-

( )

Cxy    

Kxu

B u xBKA    x

BKuBu Ax      

]uB[uA x  x

fb

fb

fb

=

−=

+−=

++=

++=

&

&

With full state feedback, get new closed loop matrix

( )BKAA
O.L.C.L. −=

Now all stability info is now given by the eigen values of new A matrix

So

u x& x y
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3.3  Controllability and Observability

The linear time-invariant system

Cxy

BuAxx

=

+=&

Is said to be controllable if it is possible to find some input u(t) that will transfer the 

initial state x(0) to the origin of state-space,

( ) ( ) ( ) ( ) ( )∫ −+=
t

0

 d ττtB uτφ0xtφtx

( )  finite,with  t0tx 00 =

The solution of the state equation is:

For the system to be controllable, a function u(t) must exist that satisfies the equation:

( ) ( ) ( ) ( )∫ −+=
0t

0

00  dττtBuτφ0xtφ0

With      finite. It can be shown that this condition is satisfied if the controllability matrix0t

B]B ... A[B  AB  AC 1n-2

M =

Has inverse. This is equivalent to the matrix         having full rank (rank n for an n- th 

order differential equation).
MC
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3.3  Controllability and Observability

Observable:

� The linear time-invariant system is said to be observable if the initial conditions x(0) 

Can be determined from the output function y(t), where t1 is finite. With
10 tt ≤≤

( ) ( ) ( ) ( )∫ −+==
t

 d ττtBuτφCxtC φCxty
0

0

� The system is observable if this equation can be solved for x(0). It can be shown that 

the system is observable if the matrix:





















=

1n-

M

CA

  ...

 CA

  C

O

� Has inverse. This is equivalent to the matrix        having full rank (rank n for an n-th 

Order differential equation). 
MO
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4.Discrete Systems

Where do discrete systems arise?

Typical control engineering example:

Digitized

sample

DAC

“Digitized”

( )th ADC

t t
“Zero-order-hold”

t
“continuous” “Digitized”

Continuous system

Computer controller

( )ku ( )tuc
( )tyc ( )ky

t

Assume the DAC+ADC are clocked at sampling period T.

Continued…
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4. Discrete Systems

( ) ( ) ( )
( ) ( ) ,...2,1,0; kkTyky

T1kt;  kTtuku

c

c

=≡

+<≤≡

Suppose: time continuous system is given by state-Space 

( ) ( ) ( ) ( )
( ) ( ) ( )tD utC xty

x0;  xtB utA xtx

ccc

0cccc

+=

=+=&

Can we obtain direct  relationship between  u(k) and  y(k)? i.e. want

Equivalent discrete system:

DAC )t(h ADC
)k(u )k(y

)k(h
)k(u )k(y

Then u(t) is given by:
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4. Discrete Systems

Yes! We can obtain equivalent discrete system.   

( ) ( ) ( )  kT uB d τekTxeTkT x c

t

0

Aτ

c

At

c 









⋅+=+==> ∫

Recall

( ) ( )
( ) ( ) ( )
( ) ( )

DC, D.B dτB de, BeSo     A

0x0       x          

kuDkxCk       y          

kuBkxA)1       x(k          

dd

T

0

Aτ

d

AT

d

c

dd

dd

====

=

+=

+=+

∫

( ) ( ) ∫ −+=
t

0

c

Aτ

c

At

c τ) dτ(t.Bue0xetx

From this ( ) ( ) ( ) dττkT.BuekTxeTkTx c

T

0

Aτ

c

AT

c −+=+ ∫

Observe that ( ) ( ) ,T]0[ for τkTuT- τkTu ∈=+

( ) T-τkTi.e. u + is constant ( )kTu over ,T]0[ τ ∈

i.e. can pull out of integral.

( ) ( ) ( ) ( )) .O Tkxkx1kx ++=+ &So we have an exact (note: discrete  time equivalent to the time 

Continuous system at sample times t=kT- no numerical approximation!
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4.1 Linear Ordinary Difference Equation

A linear ordinary difference equation looks similar to a LODE

( ) ( ) ( ) ( ) ( ) ( ) ( )k ub1k ub...mk ubk ya1k ya...1nk yanky 01m011n- +++++=++++−+++

Assumes initial values ( ) ( ) ( ) .00,y1, ...., y1n-y =m;n ≥

Z-Transform of the LODE yields (linearity of Z-Transform):

( ) ( ) ( ) ( ) ( ) ( ) ( )z Ubz Uzb...z Ubzz Yaz Yza...z Yazz Yz o1m

m

011n

1nn +++=++++ −
−

It follows the input-output relation:

( ) ( ) ( )              U(z)     bzb....bzz Yaza...azz 01m

m

011n

1nn +++=++++ −
−

( ) ( )

( ) ( ) ( )z UzGz Y          

           

zU
aza...z

bzb....bz
zY

01

n

01m

m

=

+++

+++
=

( ) ( )( ( )) ( ) ( ).zGz,  then Ykδku, 1zif U ===

Transfer Function of system is the Z-Transform of its pulse response!

Once again:
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4.1  z-Transform of Discrete State Space Equation

( ) ( ) ( )
( ) ( ) ( )kD ukC xk      y

k uBk xA1kx dd

+=

+=+

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) z  B U0z xz XzI-A

z UBz XA0-z xzX z

d

dd

+=

+=⋅

( ) ( ) ( ) ( ) ( )zB UAzI0z xzI-AzX
1

d

1

d

−−
−+=

Applying z-Transform on first equation:

( ) ( ) ( )

( ) ( ) ( )( ) ( )z UDBAzIC0z xzI-AC         

zD UzCXz Y

1

d

1

d +−+=

+=
−−

( ) ( ) ( )

( ) ( ) DBzI-ACzG

  withz  UzGzY

1

d +=

=
−

Homogeneous solution

Particular solutionNOW:

If x(0)=0 then we get the input-output relation:

Exactly like for the continuous systems!!!!!!!
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4.2  Frequency Domain/z-Transform

For analyzing discrete-time systems:

z-Transform

(analogue to Laplace Transform for time-continuous system)

It converts linear ordinary difference equation into algebraic equations:  easier to find 

a solution of the system!

It gives the frequency response for free!

z-Transform ==generalized discrete-time Fourier Transform

( ) ( ) ).eF(zωF
~

en  ,...... th2,-1- for k0kif  f
iω====

Given any sequence  ( ) kf the  discrete Fourier transform is

( ) ( )∑
∞

−∞=

−=
k

kiekfωF
~ ω 

T

1
πf,   f2 ω ==with the sampling frequency in Hz, 

T   difference / Time between two samples.

In the same spirit: ( ) ( ) ( ) . zkf]kZ[fzF
0k

-k∑
∞

=

==

With z a complex variable

Note:  
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4.3 Stability (z-domain)

A discrete LTI system is BIBO stable if

Condition for BIBO stability:

( )∑
∞

∞<∴
0

ih � BIBO stable.

For L.O.D.E State space system:

( ) ( )
( )

( )∑
==

= =
−∏

−∏
=

k

1i

ii

i

n

1i

i1i z Tβ
pz

zz
α.zH

With partial fraction of the rational function:

Once again pole locations tell a lot about shape of pulse response.

Zeros determine the size of iβ

( ) ( ) k K;  k ykM;  k u ∀<=∀<

( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑∑∑
∞

≤≤−≤−=
k

0 0

k

0

k

0

 i hM i hM i h iku  i hiku  k y
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4.3 Stability (z- domain)

.. . .

..
..

X

X

X

X X

X

X
X

X

X

X

{ }zIm

{ }zRe

Constant

Damping

Damping

Damping

Damping

Growing

Growing

unit circle

z-Plane
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4.3 Stability (z- domain)

In General

Complex pair    � oscillatory growth / damping

Real pole  � exponential growth / decay but maybe oscillatory too (e.g: 0r  )(1 <wherenr
n )

The farther inside unit circle poles are 

�The faster the damping � the higher stability

� system stable1p . i ≤ei



Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011 
72

4.3 stability (z-domain)

Stability directly from State Space:

Exactly as for cts systems, assuming no pole-zero cancellations and D=0

( ) ( )
( ) ( )d

dd

AzIdet  za

BAzICadj  zb

−=

−=

If                     for all i � system stable

Where         is the ith e-value of         .

1<iλ

iλ dA

( ) ( )
( )

( )

( )
( )d

dd

d

1

d

AzIdet

BAzICadj
        

BAzIC
za

zb
zH

−

−
=

−==
−

�Poles are eigenvalues of 

So check stability, use eigenvalue solver to get e-values of the matrix         , then
dA

dA
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4.4  Discrete Cavity Model

Converting the transfer function from the continuous cavity model to the discrete model:

( )
( ) 









+

+

++
=

12

12

2

12

2

12

ω∆ω      s

  -∆ ωs

ωs∆ω

ω
sH

The discretization of the model is represented by the z-transform:

( ) ( )
skT t

1
|

s

H(s)
LZ

z

1z

s

sH
 Z 

z

1
1zH =

−

















⋅
−

=















−=

( )
( )

( )( ) ( )





















−
⋅⋅


















⋅⋅−⋅










+⋅−

−
⋅

+
−






 −
⋅

+
=

  ∆ ω

∆ω    ω
∆ωTsin-e

 ∆ω      ω

    -∆ ω
∆ωTcosez

e∆ωTcosze2z

1z

ω∆ω

ω

∆ω      ω

∆ωω

ω∆ω

ω
zH

12

12

s

Tω

12

12

s

Tω

Tω2

s

Tω22

12

2

12

12

     12

2

12

2

12

s12s12

s12s12
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4.5  Linear Quadratic Regulator

( ) ( ) ( )
( ) ( )xC xk      z

kB ukA x1kx

=

+=+Given:

Suppose the system is unstable or almost unstable.We want to find              which will   

bring  x(k)  to Zero, quickly, from any Initial condition.

( )kufb

(Assume D=0 for simplicity)

i.e.

{A,B,C}
X

( ) ?ku fb =

+
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4.5 Trade Off

(1) “Bad“  damping                                             (1) “Good“ damping 

� Large Output excursions � Small Output excursions

(2) But “Cheap“ control i.e         Small (2) But “expensive control i.e         large.fbu fbu

Z

K

Z

K

K

fbU

K

fbU
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4.5 Quadratic Forms

A quadratic form is a quadratic function of the components of a vector:

( ) ( )

[ ] [ ] 







+



























=

+++=

=

2

1

2

1

21

2

2121

2

1

2,1

x

x
 0c 

x

x
 

b  d
2

1

b
2

1
a  

  xx       

dxcxxbxax       

xxfxf

ConstantQuadratic Part Linear Part

2

2

1
R

x

x
x ∈








=

Q

TP

( )   ex     PQx   xxf
TT ++=
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4.5  Quadratic Cost for Regulator

What do we mean by “bad“ damping and “cheap“ control? We now define precisely

what we mean. Consider:

}R uuQ x{xJ i

T

ii

0i

T

i +≡ ∑
∞

=

The first term penalizes large state excursions, the second penalizes large control.

0,R0Q >≥

Can tradeoff between state excursions and control by varying Q and R.

Large Q� “good“ damping important

Large R� actuator effort “expensive“
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4.5 LQR Problem Statement

(Linear quadratic regulator)

{ }i

T

ii

0i

T

i R uu Q xxJ += ∑
∞

=

= minimum

The optimal control sequence is a state feedback sequence { }∞

0iu

Algebraic Riccati Equation (A.R.E) for discrete-time systems.

( )

( ) SABSBBRABAQSAA         S          

SABSBBR      K

xK         u          

T1 TTT

T1 T

opt

iopti

−

−

+−+=

+=

−=

iu
0xNote: Since        = state feedback, it works for any initial state

 ;   xBuAxx 0ii1i +=+Given: given:

{ },...,u,uu 210
Find control sequence such that

Answer:
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4.5 LQR Problem Statement

{ }( ) { }∑
∞

=

∞
+=

0i

i

T

ii

T

i0i0lqr R uuQ x xu, xJ

(Of course that doesn‘t mean its “best“ in the absolute sense .-)   

(1) So optimal control,                           is state feedback! This is why we are 

interested in state feedbck.

(2) Equation A.R.E. is matrix quadratic equation. Looks pretty intimidating but 

Computer can solve in a second.

(3) No tweaking ! Just specify {A,B,C,D} and Q and R, press return button, LQR

Routine Spits out        - done

(Of course picking  Q  and  R  is tricky sometimes but that‘s another story).

(4)  Design is guaranteed optimal in the sense that it minimizes.

iopti xKu −=

optK

Remarks:
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4.5 LQR Problem Statement - Remarks

(5) As vary Q/R Ratio we get whole family of         ‘s, i.e. can Trade-off between state 

excursion (Damping) Vs actuator effort (Control)

Actuator effort

State 

excursions

i

0i

T

iu uRuJ ∑
∞

=

=

∑
∞

=

=
0i

i

T

iz Q xxJ

∑= i

TT

i pCxCx

optimali

T

i zzρ∑=

1uJ

1zJ

lqrK

Achievable
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4.6 Optimal Linear Estimation

Our optimal control has the form ( ) ( ) ( )k xkKku optopt −=

This assumes that we have complete state Information                     -not actually true!.

e.g: in SHO, we might have only a Position sensor but Not a velocity sensor.

How can be obtain “good“ estimates of the velocity state from just observing 

the position state?

Furthermore the Sensors may be noisy and the plant itself maybe subject to 

outside disturbances (process noise) i.e. we are looking for   this:

( )kxopt

Noise

sensor
Amazing box which 

Calculates “good“ estimate

Of x(k) from 

y(0),……y(k-1)

K

Process

noise

( )kw ( )1x|kx̂K û −=

( )1x|kx̂ −
( )ky

( )kv

( )kCx
{A,B,C}

X+

+
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4.6 Problem Statement :

( ) ( ) ( )
( ) ( )
( ) ( ) ( )kvkC xk     y

xC xk      z

kB wkA x1k x

+=

=

+=+

EstimatorK

Process

noise

( )kw

( )1x|kx̂K û −=

( )1x|k x̂ −

( )ky

( )kv

( )kz

sensor

Noise

{A,B,C}
X+

+

Assume also ( )0x is Random & Gaussian and that ( ) ( ) ( )kVk, wkx +

are all mutually Independent for all k.

( )1k|k x̂ − 1k ,..,0  yy −Find : Optimal estimate of  x(k)   given 

Such that  “mean squared error“  

( ) ( )[ ]  1k|k x̂k x E 
2

2
−− = minimal  

Fact from statistics:  ( ) ( ) ( )[ ]1k0 ,..., yy  kxE1 kkx̂ −=−
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4.6 Kalman Filter

The Kalman filter is an efficient algorithm that computes the new
i1i

x̂
+ ( the  linear-least-mean 

( square estimate) of the system state vector 1ix + , given { }i ,..., 0 yy ,by updating the old estimate 

1ii
x̂

− and old 1ii
x~

−
(error) .

Kalman 

Filter

(step i)
(old estimate)

(old error variance)

iy
(new measurement)

(new error variance)

(new estimate)

2

2
1ii1ii

x~p
−−

=

1ii
x̂

−

1ii
p

− i1i
p

+

i1i
x̂

+

The Kalman Filter produces
i1i

x̂
+ from 1ii

x̂
− ( rather  than 

ii
x̂ ), because it “tracks” the system

“dynamics”. By the time we compute 
ii

x̂ from 1ii
x̂

− , the system state has changed from

ii1ii BwAx to xx +=+
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4.6 Kalman Filter

The Kalman Filter algorithm can be divided in a measurement update and a time update:

Measurement update (M.U.):

Time Update (T.U.):

With initial conditions:

Kalman Filter

Measure.

update
Time

update

1ii
x̂

−

1ii
p

−

ii
x̂

ii
p

iy

i1i
x̂

+

i1i
p

+

( ) ( )
( )

1ii

1 T

1ii

T

1ii1iiii

1iii

1 T

1ii
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By pluggin M.U. equations into T.U. equations. One can do both steps at once:

Known as discrete time Riccati Equation
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4.6 Kalman Filter
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4.6 Picture of Kalman Filter
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4.6 Picture of Kalman Filter

If v=w=0=> Kalman filter can estimate the state precisely in a finite number of steps.

Plant  Equations:

Kalman Filter:
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4.6 Kalman Filter
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(2) In practice, the Riccati equation reaches steady state in a few steps. People

Often run with steady-state K.F.i.e
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Remarks:

(1)  Since iii vCxy += and
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can write estimator equation as
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can combine this with equation for 1ix +
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4.7 LQG Problem

Now we are finally ready to solve the full control problem.
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Given:

 ,vw kk both Gaussian

For Gaussian, K.L. gives the absolute best estimate
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4.7 LQG problem

Separation principle: ( we won’t prove)

The separation principle states that the LGQ optimal controller is obtained by:

(1) Using Kalman filter to obtain least squares optimal estimate of the plant state,

i.e. can treat problems of 

- optimal feedback and 

- state estimate separately.

1kkc x̂(k)x
−

=i.e.: Let

(2) Feedback estimated LQR- optimal state feedback

1kk
x̂ 

LQR
-K      

(k)
c

 x
LQR

Ku(k)

−
=

−=
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4.7 Picture of LQG Regulator 
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4.7 LQG Regulator
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4.7 Problem Statement (in English)

Want a controller which takes as input noisy measurements, y, and produces as output a 

Feedback signal ,u, which will minimize excursions of the regulated plant outputs (if no pole

-zero cancellation, then this is equivalent to minimizing state excursions.)

Also want to achieve “regulation” with as little actuator effort ,u, as possible.

Problem statement (Mathematically)

Find: Controller    

kU ky

Which will minimize the cost

Rms “state” 

excursions

Rms “actuator” 

effortPlant
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4.7 Problem Statement

Idea: Could  we use estimated state Feedback?

Remarks:

(1). Q and R are weigthing matrices that allow trading off of rms u and rms x.

(2) if                                       then  trade off rms  z VS rms u0ρ C; ρCQ
T

>=

(3). In the stochastic LQR case, the only difference is that now we don’t have complete state

information                           we have only noisy observations  

i .e can’t use full state feedback.

iii vCxy +=

( )
1k-k

x̂i.e. -K
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(5) We can let Q/R ratio vary and we’ll obtain family of LQG controllers. Can 

Plot rms z vs rms u for each one 

� Trade-Off curves

rms Z

rms U

So by specifying (1) system model, (2) noise variances, (3) optimally criterion 

, and plotting trade off curve completely specifies limit of performance of

System i. e which combinations of                       are achievable by any controller

-good “benchmark curve”.

LQGJ

ACHIEVABLE

LQG, Q/R=0.01

X other

LQG, Q/R=100

( )1Zrms

( )2Zrms

( )2Urms( )1Urms

( )rmsrms,UZ

4.7 Problem Statement


