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1.Control Theory

Objective:
The course on control theory is concerned with the analysis and design of closed loop
control systems.

Analysis:
Closed loop system is given — determine characteristics or behavior

Design:
Desired system characteristics or behavior are specified —— configure or synthesize closed
loop system

Input Variable

—| Plant }—

Measurement of

Variable .
SeNSor Variable

Control-system components
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1.Introduction

Definition:
A closed-loop system is a system in which certain forces (we call these inputs) are
determined, at least in part, by certain responses of the system (we call these outputs).

System System
inputs outputs

Closed loop system
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1.Introduction

Definitions:

**The system for measurement of a variable (or signal) is called a sensor.
¢ A plant of a control system is the part of the system to be controlled.
**The compensator (or controller or simply filter) provides satisfactory

characteristics for the total system.

System
input Q Error

\ 4

Compensator

Manipulated
variable

Sensor

\ 4

Plant

System
output

Closed loop control system

Two types of control systems:

¢ A regulator maintains a physical variable at some constant value in the

presence of perturbances.

¢ A servomechanism describes a control system in which a physical variable is

required to follow, or track some desired time function (originally applied in order
to control a mechanical position or motion).
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1.Introduction

Example 1: RF control system

Goal:
Maintain stable gradient and phase.
Solution:

Feedback for gradient amplitude and phase.

Phase amplitude
controller controller Klystron cavity
Controller
! Gradient
set point
0

~

&

Phase detector
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1.Introduction

Model:
Mathematical description of input-output relation of components combined with block
diagram.

Amplitude loop (general form):

controller Klystron .
error cavity

RF power

Reference

input

output

amplifier

plant *

\ 4

v

(
¢

amplifier

Monitoring
transducer

Gradient detector
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1.Introduction

RF control model using “transfer functions”

controller Klystron
Reference input \ Control illlput Ul(s) \ cavity Output
Error E(s) Y(s
RG) (D) I H(s) [ k() > P(s) e,
M(s)
Gradient detector
A transfer function of a linear system is defined as the ratio of the Laplace
transform of the output and the Laplace transform of the input with I. C .’s =zero.
Input-Output Relations
Input Output Transfer Function
U(s) Y(s) G(s) = P(s)K(s)
E(s) Y(s) L(s)=G(s)H(s)
R(s) Y(s) T(s)=(1+ L(s)M(s)) " L(s)
8
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1.Introduction

Example2: Electrical circuit

—"\W\,
i(t) R,

Vil O R,= |Vy1)

T
Differential equations: 1!
R i(0)+ Ry i)+ j i(t)dr=V(1)
0

. 1t
Ry i)+ ! i(t)de =Vy1)

A

Laplace Transform: ]
Ry 1(5)+ Ry I(5)+——1(s) = V/(s)
5.

R, I(s)+il(s)=V2(s)
s-C
Transfer function:

Vis)  R,-C-s+I
V(s) (R ,+R,)C-s+1

G(s)=

Input V, ,output V,
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1.Introduction

Example 3: Circuit with operational amplifier

. R, C
o e AN — S~ L
Vi‘ " v,
e + |

Vi(s)=R,1(s) and V(s)= _(Rz +LJI](S)
s-C

Vi(s) _ R,-C-s+1

V(s)  R,-C-s

It is convenient to derive a transfer function for a circuit with a single operational
amplifier that contains input and feedback impedance:

Z,(s)

G(s)=

I(s)
_———— Z(s) ® \ o— — —
V(s [ L [V

-——— _T_ o= ==
= . _V(s)__Zs)
V(s)=Z(s)I(s) and V,(s)=~Z (s) I(s) " T T )
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Model of Dynamic System

We will study the following dynamic system:

Parameters:
k : spring constant
Y I:j k Y : damping constant
u(t) : force
- Quantity of interest:
l -[y (1) ¥(1) : displacement from equilibrium
u(t)

Differential equation: Newton’s third law (m =1 )

)= F,, =—ky(t)-y y(t)+ult)
y(l‘)wy'( )+ky(t)=ulr)
y(0)=y,,30)=y,

»Equation is linear (i.e. no )72 like terms).
»Ordinary (as opposed to partial e.g. = i— f ( )

ox ot
» All coefficients constant:k(t) =K ,y(t ) =7yforall ¢
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Model of Dynamic System

Stop calculating, let’s paint!!!

Picture to visualize differential equation

1.Express highest order term (put it to one side)

$(e)=—k y(t)=y 3(t)+ul)

2.Putt adder in front

u(t) ) )i(t)
(1)
—ky(t)

3.Synthesize all other terms using integrators!

Block diagram

y(t)

\ 4
—

" > f

k

<
<
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2.1 Linear Ordinary Differential Equation (LODE)
General form of LODE:

y(”)(t)+ a y(”_])(t)+...+a1 y(t)+a, y(t)=b, u(m)(t)+...+b] i(t)+ b, ult)

m,n Positive integers, m < n; coefficients a,,d,,...,a,_;, bo,...,bm real numbers.

Mathematical solution: hopefully you know it

Solution of LODE: y(t ) =Yy, (f )+yp (f ),
Sum of homogeneous solution y, (t ) (natural response) solving

yW @)+ a, , y" )+ +a, () a, y()=0
And particular solution y ) (t) )

How to get natural response y, (t ) ? Characteristic polynomial

w(A)=2"+a,_ A" +ad+a,=0
(l_i])r'(l_jﬁ%]) (}L i) 0

t

~

n
yh(f):(cﬁczﬂr +c, t”)el +c, e+ . +cet

Determination of y » relatively si mple 1f mput u(t) yields only a finite number of
independent derlvatlves Eg.:u t 3 =e
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2.1Linear Ordinary Differential Equation (LODE)

Most important for control system/feedback design:
y ' (t)+a, y(”_])(t)+...+a1 y(t)+a, y(t)=b, u(’")(t)+...+b1 i(t)+b, ult)

In general: given any linear time invariant system described by LODE can be
realized/simulated/easily visualized in a block diagram (n =2, m = 2)

Control-canonical form

b]
\"Jr yle

A 4

bZ

A 4

<
—
~
N—
‘j
v
—
o
\S]
v
—
=
v
S
+%
N—

1
»
>

\—al:

Very useful to visualize interaction between variables!
What are x; and X,?77?

More explanation later, for now: please simply accept it!

aO:

14
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2.2 State Space Equation

Any system which can be presented by LODE can be represented in State space
Jorm (matrix differential equation).

What do we have to do ???

Let’s go back to our first example (Newton’s law):

1. STEP:

¥(e)+y 3(t)+k y(t)=ulr)
Deduce set off first order differential equation in variables
X; (t) (so-called states of system)

X, (t) = Position : y(t)

X, (t ) = Velocity : y(t)

%, (t)= 3(t)=x,(0)

i (1)= (e) =~k y(e) =y 3(e) +ult)
=—k x,(t) =y x,(t)+ult)

One LLODE of order n transformed into n LLODEs of order 1

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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2.2 State Space Equation
2. STEP:

Put everything together in a matrix differential equation:

x(t)=Ax(@)+Bulr)

State equation

y(t)=C x(¢)+ D ulr)
Measurement equation

Definition:

The system state x of a system at any time ¢, is the “amount of information” that,

together with all inputs for ¢ > ¢, , uniquely determines the behaviour of the system
forallr>z,.

16
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2.2 State Space Equation

The linear time-invariant (LTI) analog system is described via
Standard form of the State Space Equation

x(t)=A x(¢)+ B ulr) State equation

y(t)=C x(t)+ D ulr) State equation

X (t )

x, (t)

System completely described by state space matrixes A, B, C, D ( in the most cases D=0 ).
Declaration of variables

Where )'c(t)is the time derivative of the vector  x(t)= . And starting conditions x(to)

Variable Dimension Name

X (¢) nxl1 state vector

A nxn system matrix

B nxr input matrix

u(r) rxl input vector

y(t) pXxl output vector

C pxn output matrix

D pXr matrix representing direct coupling

between input and output

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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2.2 State Space Equation
Why all this work with state space equation? Why bother with?
BECAUSE: Given any system of the LODE form
YO D) +a,_, y )+ +a, y(t)+a, y(e)=b " (e)+...+b, i(t)+b, ult)
Can be represented as
x(t)=Ax@)+Bulr)
y(t) = Cx(t)+ Du (t)

with e.g. Control-Canonical Form (case n=3 ,m=23):

o 1 0 0
A= 0 0 1|,B=|0|,C=|pb,b,b,],D=b,
-a, —a, —a, 1

or Observer-Canonical Form:

00 —a, b,
A=|10 -a,|,B=|b,|,C=[0 0 I],D=b,
01 —a, b,

Notation is very compact, But: not unique!!!
Computers love state space equation! (Trust us!)
Modern control (1960-now) uses state space equation.
General (vector) block diagram for easy visualization.
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2.2 State Space Equation

Block diagrams: Control-canonical Form:
[ +1
D, b,
£\ ‘i el I [ /B N
" ' L
l/t(t ) -1 \ 4
a ao

+1

Observer-Canonical Form:

b, b, b,

+ . (1)
J _]t?_’ J = +’u >

a a,
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2.2 State Space Equation

Now: Solution of State Space Equation in the time domain. Out of the hat...et voila:

x(t)= +I 7)Bult—1)de

Natural Response + Particular Solution
y(t)=C x(t)+ D ulr)
=C &(r) x(0 +CI t)B ult—7) de+ D ult)

With the state transition matrix

2 3

A 3 At
&)= I+At+7t topt L=

Exponential series in the matrix A (time evolution operator) properties of @(¢) (state transition matrix).
do(t)
dt

2.00)=1
3.0(t, +1,)=&(t,) o(t,)

1.07(1)=(-1)

0 1 , (oo 1t
A= = A’ = , D(r)=1+ At = =¢
00 00 0 1

Matrix A is a nilpotent matrix.

1. =A o)

Example:

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011



2.3 Examples

Example:

It is given the following differential equation:

L)+ 455043 3(0)=2 ul)

» State equations of differential equation:

Let x, (r)= y(t) and x, (t)z y(t) . It is:

x,(t)= (1) = x,¢)
i, () +4 x,(t)+3 x,(£) =2 ult)
%,(t)==3 x,(t)—4 x,(t)+ 2 ult)

» Write the state equations in matrix form:

X (t)

X2 (l)

)= B ! }c(mm )
y(e)=11 0]x()

Define system state x(t) = { } . Then it follows:

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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2.3 Cavity Model

. I
Ig Conductor CIrculator COIldllCtOl’ 1 Ib
= —)—€ R
L L |l j==—=q===-
" % L X | I
Last I | b
1 . G Generator Z : : L : G«) Beam-Current
| |
L-—-L_-_.
1 ! | Resonator

Coquler 1:m,

Equivalent circuit:

Generator

1;9

_ 1 o
2R,C 20,

Wy/o¢

.. i 2 . .
U+2w,, U+w, U=2Rwv,, -(—Ig +1,,j
m
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2.3 Cavity Model

Only envelope of rf (real and imaginary part) is of interest:

Ult)=(U,()+i U,(1))-exp(i 1)
I, (¢)= (Igr(t)+ilgi(t))'exl7(i a)HFt)
Ib(t): (Ibwr(t)‘l'ilbwi(t))’exP(i wHFt):Z(Ibor(t)+iIbai(t))'exp(i DOy t)

Neglect small terms in derivatives for U and |
U, +iU,(t) <<z U, (1) +iU,(1)
20,,\U, +iU, (1) <<y (U (0)+iU1)

T(ir(f)+iii(t)) dr << TwHF(Ir(t)HIi(t)) di

Envelope equations for real and imaginary component.

: 1
Ur(t)+a)]/2 U, +4w-U, :wHF(éj'(;llgr +Ib0rj

: 1
Ui(t)+a)1/2 U, —4dw-U, :wHF(é).(%Igi +Ib0ij

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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2.3 Cavity Model

Matrix equations:
o 2

With system Matrices:

L1 ()+1,,0)

_Igi(t)+lb0i(t)

) —Aw 10
Ao -w,), Q)0 1

General Form:

x(t)=A-%()+B-ii(r)
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2.3 Cavity Model

_ o2 cos(Aa)t) —sin(Aa)t)
b= Lm(dwt) cos(dowt)

Special Case:

L0410
)= ’;L t t {I}
—1 (t)"'lbol'(t)

m &

00 2l o s, otan -atsn] ) 1

i

25
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2.3 Cavity Model

> > I
Integrator >
+ i
TH->—O-
S S
Step Gain -/ - . Integrator 1
Gain 1 Harmonic oscillator
/31:
\I
Gain 2

\ A /

]—' L] Harmonic oscillator

_|_ > x'=Ax+ Bu Scope
y=Cx+Du
Step State space
Step
cavity Load Data f] x'= é‘x: g” |1
> y=Cx+Du
State space Scope

i)

Step
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2.3 Cavity Model

Integrator

T 0! .

Gain 2

wl2

Load Data

i)

+

n

U
Z€
7 Y

Gain 4

Step 1

>

/ + Integrator 1

Gain 5

1

— \ 4
N

Gain 3

wil2

\ 4 A 4

Scope

27



2.4 Masons Rule

Mason’s Rule is a simple formula for reducing block diagrams. Works on continuous and
discrete. In its most general form it is messy, but For special case when all path touch

Z (forward path gains)
1 —Z (loop path gains)

H(s)=

Two path are said to touch if they have a component in common, e.g. an adder.
10 11
o H 5

U 1 I N N ™ 4;/1\ s g 6 Y
1 3

R

\ 4

v

y N

» Forward path: F;:1-10-11-5-6 !
Fyl-2-3-4-5-6 Glf,)=H
G(f2)=H H H,
» Looppath: I[;:3-4-5-8-9 I )=
L: 5-6-7 GU,)=H,
Check: all path touch (contain adder between 4 and 5) G(I )=

G(]C])+G(f2) — H5H3 +H]H2H3 — HS(H5 +H]H2)

» By Mason’s rule: H = = =
1-G(,)-G(,) I1-H,H,~H, I1-HH,-H,
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2.5 Transfer Function G (s)

Continuous-time state space model
x(t) =A x(t)+ B u(t ) State equation
y(t ) =C x(t )+ D u(t) Measurement equation

Transfer function describes input-output relation of system.

Yl (s)

Uls) > System

s X(s)—x(0)=A X(s)+B U(s)

)—
X(s)=(sI—A)"x(0)+(s1-A)"'BU(s)
= g(s) x(0)+ (s) BU(s)

Y(s)=CX(s)+D U(s)
=C[ (sl —A)" Jx(0)+ [c(sT = A)'B+D]U(s)
=C ¢(s)x(0)+C o(s) BU(s)+D Uls)

Transfer function G(s) ( pxr) (case: x(0)=0):

G(s)=C(sI-A)'B+D=Co(s) B+D

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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2.5 Transfer Function

Transfer function of TESLA cavity including 8/9-pi mode

+ — A
7 —mode H_ (s)= . (0)1/2 Jx : (S (@, )n' @, j
Ao, + (S + (a)l/z) ) —do, s+ (a)l/z )7r
] (wl/z )§7, $F (a)1/2 )§” A(()SE
gn—mode H§ (s)=— A ( 9)
" Aa);r +(S + (601/2 )2”) a)iﬂ § T )

30
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2.5 Transfer Function of a Closed Loop System

U (s) G(S) Yl (s)

> H(S)

\ 4

o
»

M(S) <

We can deduce for the output of the system.

Y(s) =G(s) U(s):G(S)H (s) E(s)
Gls) H,(s)[R(s)-M(s) ¥(s)]
L{s) R(s)-L(s) M(s) Y(s)

With L(s) the transfer function of the open loop system (controller plus plant).

(1+L(s) M (s)) Y(s)= L(s) R(s)
Y(s)=(I+L(s) M(s))" L(s) R(s)
=T(s) R(s)

T(s) is called : Reference Transfer Function

31
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2.5 Sensitivity

The ratio of change in Transferfunction T(s) by the parameter b can be defined as:

System characteristics change with system parameter variations

g = AT(s) b The sensitivity function is defined as:
T(s) 4b ST = jim AT b _ doI(s) b
-0 Ab T(s)  db T{(s)

Or in General sensitivity function of a characteristics W with respect to the parameter b:

v _OW b
y =
ob W
Example: plant with proportional feedback given by GC ( S) — Kp G, (s) _ K
s+0.1
K G (s N
Reference transfer function T(s): T(S) — P 1’( ) IS
1+K G, (s)H,
rr Kp=10

ST(. )_ _KpGp(]w)Hk _ _OZSKP N
H\JW)= : - : Kp=1
1+K,G,(jo)H, 01+025K,+ jo
Increase of H results in decrease of T >

—> System cant be insensitive to both H,T omega
32
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2.5 Disturbance Rejection

Disturbances are system influences we do not control and want to minimize its
impact on the system.

G.(s)-G(s) G,(s)
= R(s) +
I+G(s)-G,(s) H(s) I+G(s)-G,(s) H(s)

=1(s) -R(s) +T,(s) - D(s)

C(s) D(s)

|
o (G, (s) |
To Reject disturbances, make  7,-D(s) small! , l |
1 +] !

R(s) —n G.(s)—>G,(5) — : C(s)

- I

» Using frequency response approach to R '
investigate disturbance rejection HE) Plant
> In general T4(j@w) cant be small for all - <

Design Td( J a)) small for significant
portion of system bandwidth

» Reduce the Gain Gd ( ]a)) between dist. Input and output

» Increase the loop gain Gc(j w)Gp(jw) without increasing the gain Gd(j w).Usually
accomplished by the compensator Gc(jw) choice

» Reduce the disturbance magnitude ¢ (t) should always be attempted if reasonable
» Use feed forward compensation, if disturbance can be measured.
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2.6 Stability

Now what do we know:
The impulse response tells us everything about the system response to any arbitrary
input signal u(z) .

what we have not learnt:
If we know the transfer function G(s), how can we deduce the systems behavior?
What can we say e.g. about the system stability?

Definition:

A linear time invariant system is called to be BIBO stable (Bounded-input-bounded-output)
For all bounded inputs ‘u(t)( < M, (for all t) exists a boundary for the output signal M,
So that ‘y(r){ <M, . (for all t) with ps , and M, positive real numbers.

Input never exceeds M, and output never exceeds M, , then we have BIBO
stability!

Note: it has to be valid for ALL bounded input signals!

34
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2.6 Stability

Example: Y(S) — G(S) U(S), integrator G(s) — 1
Ry

1.Case
ult)=96(), U(s)=1

(@) |= |t Y ()] | =

=1

A

The bounded input signal causes a bounded output signal.

2.Case

u(t)=1, U(s)zé

0= = | 4]

=1

BIBO-stability has to be shown/proved for any input. Is is not sufficient to show
its validity for a single input signal!

35
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2.6 Stability

Condition for BIBO stability:
We start from the input-output relation

Y(s)= G(s) Ul(s)

By means of the convolution theorem we get

@) | =] @) ule- o)

0

Therefore it follows immediately:

If the impulse response is absolutely integrable

J:\ g(t)|dt < oo

Then the system is BIBO-stable.

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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2.7 Poles and Zeroes

Can stability be determined if we know the TF of a system?

[SI — A]

G(s)=C®(s)B+D=C X(S)adf B+D

Coefficients of Transfer function G(s) are rational functions in the complex variables

—q- Zzl(s_zk)_Nij()
4 0) = ) " D)

!

{kx Zeroes,p, Poles,o real constant, and itis ;2 < (we assume common factors have
already been canceled!)

What do we know about the zeros and the poles?

Since numerator N (S) and denominator D(S) are polynomials with real coefficients,
Poles and zeroes must be real numbers or must arise as complex conjugated pairs!

37
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2.7 Poles and Zeroes

Stability directly from state-space
Recall : H(s)=C(sI - A)_IB +D

Assuming D=0 (D could change zeros but not poles)

Cadj(sI - A)B b(s)
H(S) = =
det(sI — A) al(s)
Assuming there are no common factors between the poly Cadj(sl — A)B and det(sI — A)
1.e. no pole-zero cancellations (usually true, system called “ minimal” ) then we can identify

and b(s)= Cadj(sI — A) B

a(s) =det (sI—A)

i.e. poles are root of det (sI —A)
Let A, bethe i” eigenvalue of A

if Refl }<0 foralli=> System stable
So with computer, with eigenvalue solver, can determine system stability directly from coupling matrix A.

38
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2.8 Stability Criteria

> A system is BIBO stable if, for every bounded input, the output remains bounded with
Increasing time.

» For a LTI system, this definition requires that all poles of the closed-loop transfer-function
(all roots of the system characteristic equation) lie in the left half of the complex plane.

Several methods are available for stability analysis:
1.Routh Hurwitz criterion
2.Calculation of exact locations of roots

a. Root locus technique

b. Nyquist criterion

c. Bode plot

3.Simulation (only general procedures for nonlinear systems)

» While the first criterion proofs whether a feedback system is stable or unstable,
the second Method also provides information about the setting time (damping term).

39
Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011



2.8 Poles and Zeroes

Pole locations tell us about impulse response i.e. also stability:

Medium oscillation

Fast oscillation

Medium decay A No growth
Iy,
I
'
I -~
l’ \‘l 11 (
11X 11 VXI
[ ,' 11 1
. 1 1
Ly . V! Medium oscillation
I ,' I Il 1y Medium growth
| I [
< X 1 |\ | § — X >
[ [ (|
4 Iy [ ([
Iy 1| I
(I P I
L 1 '| I
> ' >
1 ‘\ ,‘ ‘\ \ o \X: ! 1
No Oscillation N VA No oscillation '« _ No oscillation
Fast Decay \ % No growth Fast growth
\
\\X‘
g
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2.8 Poles and Zeroes

Furthermore: Keep in mind the following picture and facts!

»Complex pole pair: Oscillation with growth or decay.
»Real pole: exponential growth or decay.
»Poles are the Eigenvalues of the matrix A.

> Position of zeros goes into the size of C;....

v" In general a complex root must have a corresponding conjugate root ( N(s), D(S) polynomials
with real coefficients.
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2.8 Bode Diagram

dB,

W, ‘
,
: Gain Margin
0 .
0 @, , W
— 90—
Phase Margin
_18w SOPRRUPITPPPPPTPTTPIURPRTPRPRTRUOTIIRRRRPRL J00 SN 7 7 NUSUOOTTTO e S-SR PSP PPPPRPPROPRIRt

The closed loop is stable if the phase of the unity crossover frequency of the OPEN LOOP
Is larger than-180 degrees.
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2.8 Root Locus Analysis

Definition: A root locus of a system is a plot of the roots of the system characteristic
equation (the poles of the closed-loop transfer function) while some parameter of the
system (usually the feedback gain) is varigd.

—

T
]

\,\

~ K
= 6= p) 67
R(s):? I : H(S) Y(S) :
G, (s)z ]ng(S()S)rootsat 1+ KH (s)=0.

How do we move the poles by varying the constant gain K?
Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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2.8 Root Locus Examples

I 1 | !
s—p, (S—p])(S—pz)
——x : — X ——X =
P; 1% P
(a) T (b)
| S—Z; | S—1;
(S_pz)(s_pz) (S—p])(S—pz)
———— O > 0 >
p2 Z] p] p]
d
© (d)
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2.8 Root Locus Examples (Cnt’d)

P>
1 X 1
(5—p)s—p,) 5~ 1)) \ (5—p)s—p,) 5~ 1))
—— > < >
P; P> X P; } P
X
Ps
(e) ®
pz/ 1 X
X §— - §—
(S—pl)(s—pz)(s—p3) ( p])(s Pz)( Ps)
< A > e —
P P; \P>» % Pi
X\
P; )

(2
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3.Feedback

The idea:
Suppose we have a system or “plant”

“open loop”

—_— plant }———

We want to improve some aspect of plant’s performance by observing the output
and applying a appropriate “correction” signal. This is feedback

r
/1
> > lant >
A\ % P “closed loop”
Ufeedback
? <

Question: What should this be?

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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3.Feedback

Open loop gain:

Closed-loop gain:

U Y
() o G(s) .
U, “closed loop”
H(s) |e
GC.L(S): G(S)
1+G(s) H(s)
Proof: y:G(u—ufb)

=Gu—-Guy, = y+GH, =Gu
Gu-ry  =te G
u (I+GH)

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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3.1 Feedback-Example 1

Consider S.H.O with feedback proportional to x i.e.:

Where )'é+y5c+a),fx=u+ufb

u,,(t)=-0 x(t)

Then X+yx+o’x=u—ox
==> )'c'+y)'c+(a),f +0c)x =u

Same as before, except that new “natural” frequency a)j + o
Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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3.1 Feedback-Example 1

1

Now the closed loop T.F. is: G- (S) =— >
ST+ Vs + (a)n + OC)

N ‘GO'L‘ (iw) ‘
dB oL
‘G ‘ (za)) ‘
/7N
1\
! N
!
1 , AN
— ——— ~~—log(e))
0 7 > N
n log , - log o +a N
1 - - - \\
— | _---
©, + 0
DC response: s=0

So the effect of the proportional feedback in this case is to increase the bandwidth
of the system
(and reduce gain slightly, but this can easily be compensated by adding a constant gain in front...)
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3.1 Feedback-Example 2

In S.H.O. suppose we use integral feedback:
t

ufb(t)z —ajx(r) dt

0

t

e X+yi+ow’ x=u—0cj.x(r) dt

v

Differentiating once more yields: X + 9 X+ a)j X+ox=u

No longer just simple S.H.O., add another state

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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3.1 Feedback-Example 2

1
2 2
GC.L.(S)_ s +yst+o,

(e

S
sls? +ys + 02 )+ a

Observe that

, 1. G“(0=0)
2. For large s (and hence for large w)
A 4
dB \ G (5)=1 ! =G )
‘GO.L. (w))‘ \ sTHYysto,
7 \\
/ \
/ \
1/ | \ ;l
y | >log(w)
/
K
/, ‘GC.L.(l-a))‘
/

/

So integral feedback has killed DC gain
1.e system rejects constant disturbances
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3.1 Feedback-Example 3
Suppose S.H.O now apply differential feedback 1i.e.

Uy, (t) =—0 x(t)

A 4

o X

Now have

. . 2
i+(y+a)i+w’x=u
So effect off differential feedback is to increase damping

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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3.1 Feedback-Example 3

1
N G C.L. —
o (5) sP+(y+a)s+o’
dB+4
‘GO.L. (la))‘
_- T TN
- N\
i === R\
— = I »log(m)
" ‘GC.L. (za))‘ .
\N

So the effect of differential feedback here is to “flatten the resonance” i.e. damping is increased.

Note: Differentiators can never be built exactly, only approximately.
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3.1 PID controller

(1) The latter 3 examples of feedback can all be combined to form a
P.L.D. controller (prop.-integral-diff).

v

u X =
{(+) > S.H.O ? Y

P.1I.D controller
K,+K,s+K,/s

y N

Uy, =U, 1, L,

(2) In example above S.H.O. was a very simple system and it was clear what
phvsical interpretation of P. or 1. or D. did. But for large complex systems not
obvious

=>» Require arbitrary ‘ tweaking”

That’s what we’re trying to avoid
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3.1 PID controller

For example, if you are so smart let’s see you do this with your P.I.D. controller:

6" order system
3 resonant poles
3 complex pairs
6 poles

[
>

/

S

T~

Damp this mode, but leave the other two modes undamped, just as they are.

This could turn out to be a tweaking nightmare that’ll get you nowhere fast!

We’ll see how this problem can be solved easily.

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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3.2 Full State Control

Suppose we have system
x(t)=Ax(@)+Bu(t)

y(t)=Cx(r)

Since the state vector x(t) contains all current information about the system the
most general feedback makes use of all the state info.

Ug =—kx —... -k, x
=-kx
Where k = [k Joeeens kn] (row matrix)

Where example: In S.H.O. examples

Proportional fbk :  u, =—k x=— lkp ()J

Differential fbk : i, =—k,i=—[0 k|

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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3.2 Full State Control

Theorem: If there are no poles cancellations in

G, ()=29) _c(a-a)'s

a(s)

Then can move eigen values of A— BK anywhere we want using full state feedback.

Proof:
Given any system as L.O.D.E. or state space it can be written as:
AO.L. B
' A N\ ,—H
(x| [0 I 01 [x] [0]
0 s 0
= + u
0 1
_xn_ __aO -a n-1_| _xn_ _] _
o
y=lb, ... ... b ]
xl’l
Where -

n—1I
b _,s""+..+b,

n n—1
S +Cln_IS +...+Clo

G =C(sI-A)'B=

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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3.2 Full State Control

i.e. first row of A L Gives the coefficients of the denominator
a®"(s)= det(s[ — AO'L‘)z s"+a_s" +..+a,

Now
ACL — AOL _BK
(0 1 .. 0] 0]
_| 2 1% ke k,.]
0 ' ] 0 n-1
| -a -G, ] |1 ]
T 0 ] 0 |
0
-9 1
_-(ao +k,) ... .. -(a_ +k, )J

So closed loop denominator

g O (S): det (s] — At )
= s" + (aO + k, )Sn_l + ...+ (an—l + kn—l)

Usingu = —Kx have direct control over every closed-loop denominator coefficient

=» can place root anywhere we want in s-plane.
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3.2 Full State Control

Example: Detailed block diagram of S.H.O with full-scale feedback

v

Of course this assumes we have access to the X state, which we actually
Don’t in practice.

However, let’s ignore that “ minor” practical detail for now.

( Kalman filter will show us how to get X from x ).
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3.2 Full State Control

With full state feedback have (assume D=0)

u : X y
4>®—> B 1 z— " C —
Uy =—kx A [
K |«
50 X =Ax+Blu+u,]
= Ax+Bu+ BKu,
x =(A-BK)x+Bu
Uy =—Kx
y =Cx

With full state feedback, get new closed loop matrix
AC.L. — (AO.L. _ BK)

Now all stability info is now given by the eigen values of new A matrix

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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3.3 Controllability and Observability

The linear time-invariant system

Xx=Ax+ Bu
y=Cx

Is said to be controllable if it is possible to find some input u(t) that will transfer the
initial state x(0) to the origin of state-space, x(to) =0,with { finite

The solution of the state equation is:

)= p(0)x0)+ [ p(@)B u ¢ - ) de

For the system to be controllable, a function u(t) must exist that satisfies the equation:

0= o1, )x(0)+ [ p(c)Bur, - 7) de

With 7, finite. It can be shown that this condition is satisfied if the controllability matrix

C,=[B AB A’B ... A"'B]

Has inverse. This is equivalent to the matrix C,, having full rank (rank n for an n- th
order differential equation).

61
Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011



3.3 Controllability and Observability

Observable:

» The linear time-invariant system is said to be observable if the initial conditions x(0)
Can be determined from the output function y(t), 0 <f <¢, where t, is finite. With

y()=Cx = C p()x0+C [ p(e)Bu (1 - 7) dx

» The system is observable if this equation can be solved for x(0). It can be shown that
the system is observable if the matrix:

C

CA
0, =

_CAn_l —

» Has inverse. This is equivalent to the matrix O, having full rank (rank n for an n-th
Order differential equation).

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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4.Discrete Systems

Where do discrete systems arise?

Typical control engineering example:

_________________________________ Digitized
: Continuous system : sample
[ |
[ |
u.\t !
M(k): A DAC ) J{ Alt) ):t) o ADC : il
1 I
e e e e e e e e e — e —— == |
“Digitized” “Zero-order-hold” “continuous”  «Djgijtized”

Computer controller

Assume the DAC+ADC are clocked at sampling period T.

Continued... 63
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4. Discrete Systems

Then u(t) is given by:
u(k)= uc(t); kT <t<(k+1)T
y(k)E yc(kT ) k=0,1,2,..

Suppose: time continuous system is given by state-Space

i, (0)=Ax (0)+ Bu () x.(0)=x,
y.(t)=Cx (t)+Du,(r)

Can we obtain direct relationship between u(k) and y(k)? i.e. want
Equivalent discrete system:

3
S
>
a
=
o
S
A

u(k ) y(k)

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011

64



4. Discrete Systems

Yes! We can obtain equivalent discrete system.

Recall X, (t)= e x, (0)+ | e**.Bu (t—1)dr

H S ey

T
From this xc(kT +7T)= e’ x, (kT )+ J.eAT.Buc(kT —1)dt

0
Observe that u(kT +T-7)=u(kT ) for 1€ [0,T]
i.e. u(kT +T-t) is constant u(kT) over te [0,T]

1.e. can pull out of integral.
=> x (kT +T)=e"x (kT )+ (je“ B dTJ u (kT)
0

x(k+1)=A,x(k)+B,u(k)
(k)= C,x(k)+ D,uk)
Am=aw)

T
So A,=e"",B,=[e".BdiBd,=C,D,=D
0

So we have an exact (note: x(k + 1) = x(k)+ i(k) T +0()) discrete time equivalent to the time
Continuous system at sample times t=kT- no numerical approximation!
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4.1 Linear Ordinary Difference Equation

A linear ordinary difference equation looks similar to a LODE
y(k +n)+ a, yk+n—1)+..+ a, ylk+1)+ a, y(k)= b, ulk +m)+... +b, ulk + ])+b0 u(k)
n 2 m, Assumes initial values y(n—] ) ..... y(] ),y(O) =0.

Z-Transform of the LODE yields (linearity of Z-Transform):

2" Y(z)+ 7a,_, Y(z)+...+za1 Y(z)+a0 Y(z)= 7"b, U(z)+...+zb] U(z)+b0 Ulz)

It follows the input-output relation:

(z” +7"a _ +..+za, +a0) Y(z)= (z’”bm +....+ zb, +b0) U(z)

¥(z)= Z bm +....+2b, +b, U(z)
" +..+za,+a,

Once again:

ifU(z)=1, (u(k)=0(k)), then Y(z)=G(z).

Transfer Function of system is the Z-Transform of its pulse response!
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4.1 z-Transform of Discrete State Space Equation

x(k+1)=A, x(k)+ B, u(k)
y(k) = Cx(k)+ D u(k)

Applying z-Transform on first equation:
z- X(z)-z x(O) =A, X(z)+ B, U(Z)
(21-4,) X (z)=2zx(0)+ B U(z )
X(z)=(2l-A,)" 2 x(0)+ (21 = A,) "B U(2)

Homogeneous solution

NOW: Particular solution

Y(z) = CX(z)+ D U(Z)
= C (1A, 2 x(0)+(C(zr - A,) ' B+ D) U(2)

If x(0)=0 then we get the input-output relation:

Y(z)= G(z)U(z ) with
G(z)= C(zI—Ad)_1B+D
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4.2 Frequency Domain/z-Transform

For analyzing discrete-time systems:
z-Transform
(analogue to Laplace Transform for time-continuous system)

It converts linear ordinary difference equation into algebraic equations: easier to find
a solution of the system!
It gives the frequency response for free!

z-Transform ==generalized discrete-time Fourier Transform

Given any sequence f (k) the discrete Fourier transform is

Flo)=Y flk)e™™
k=—oc0
withw = 2xnf, f = % the sampling frequency in Hz,

T difference / Time between two samples.

In the same spirit: F(z)= Z[f (k)] = i fk)z™.
k=0
With z a complex variable

Note: e ¢ (k)= 0 fork =-1,-2,..... then F(w)= F(z =™ ).
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4.3 Stability (z-domain)

A discrete LTI system is BIBO stable if

| ulk)|<M; vk =|y(k)|<K; Vk

Condition for BIBO stability:

y(k) | = ZZ:u(k—i)h(i) si (ki) | h(i)\SMZ::\h(i)\SMg\h(i)\

i h(i) < = BIBO stable.
0

For L.O.D.E State space system:

M. (z- zi)): S 8, 7,(2)

H = .
(Z) ! H?:](Z_pi i=1

With partial fraction of the rational function:
Once again pole locations tell a lot about shape of pulse response.

Zeros determine the size of f,
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A

4.3 Stability (z- domain)
Im{z}

unit circle

Constant
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4.3 Stability (z- domain)

In General
Complex pair = oscillatory growth / damping
Real pole = exponential growth / decay but maybe oscillatory too (e.g: r"1(n) wherer <0)

The farther inside unit circle poles are
=>» The faster the damping =¥ the higher stability

i.e ‘pi‘ < 1 => system stable

71
Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011



4.3 stability (z-domain)

Stability directly from State Space:

Exactly as for cts systems, assuming no pole-zero cancellations and D=0

H(z)=28) _croa,)'s,

_ Cadj(zl - A,)B,
det(zl — A))

b(z) = Cadj (2l — A,)B,
a(z) =det(zI—Ad)

=>Poles are eigenvalues of A,
So check stability, use eigenvalue solver to get e-values of the matrix A, , then

If ‘ /ll,‘ < 1 foralli=>» system stable

Where A is the ith e-value of A, .

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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4.4 Discrete Cavity Model

Converting the transfer function from the continuous cavity model to the discrete model:

+ -/
H(S): 2 @, : ST W,
Ao’ +(s+w,) |do  s+o,

The discretization of the model is represented by the z-transform:

- () ofe )

H(7)= @3 | Pz Ao _ @3 . z—1
< _A 2 2 2 2 2 2Ty 2] 2Ty
w0 +w, |[do o, Ado” +w;, z°—2ze -cos(Aa)T)s+e

A y
' [(Z_ew]ﬂs 'COS(ACOTS))'{COJZ D-e‘”ﬂs -sin(Aa)TS)'{ v a)u}
12

do o -w,, 4
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4.5 Linear Quadratic Regulator

Given: x(k+1)=Ax(k)+ Bu (k)
z (k)=Cx(x)

(Assume D=0 for simplicity)

Suppose the system is unstable or almost unstable.We want to find ufb(k) which will
bring x(k) to Zero, quickly, from any Initial condition.

i.e.

(D

P
'
F
@)
Y2

A
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4.5 Trade Off

AN

Zu Z N

vaxS Ve

4

TA
/\ <9 K / » K
A \/
(1) “Bad“ damping (1) “Good“ damping
=>» Large Output excursions =» Small Output excursions
(2) But “Cheap* control i.e I/tfb Small (2) But “expensive control i.e I/tfb large.
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4.5 Quadratic Forms

A quadratic form is a quadratic function of the components of a vector:

f(x): f(xz,xz)

— oy 2 2
=ax; +bx,x, +cx, +dx,

]
a —b X X
[ ]| 2 H+[c01 }
Lpa |L* 2
| 2 i pT
)

Quadratic Part  Linear Part Constant
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4.5 Quadratic Cost for Regulator

What do we mean by “bad‘“ damping and “cheap* control? We now define precisely
what we mean. Consider:

JEEEZQfoi+u%RuJ
i=0

The first term penalizes large state excursions, the second penalizes large control.

QO=>0,R>0

Can tradeoff between state excursions and control by varying Q and R.

Large Q= “good* damping important

Large R=¥» actuator effort “expensive*

Stefan Simrock, “Tutorial on Control Theory” , ICAELEPCS, Grenoble, France, Oct. 10-14, 2011
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4.5 LQR Problem Statement

(Linear quadratic regulator)

Given: x,,, = Ax;+Bu,; x, given:
Find control sequence {uo’”puz’---} such that

J :ixiT{Qxi+uiTRui}
i=0

= minimum
Answer:

The optimal control sequence is a state feedback sequence {”i };’

K, =(R+B"SB)"'B"sA

S =A"SA+Q—-A"AB(R+B"SB) "' B'sA

Algebraic Riccati Equation (A.R.E) for discrete-time systems.

Note: Since U ; = state feedback, it works for any initial state X,
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4.5 LQR Problem Statement

Remarks:

(1) So optimal control, u, =—K opX; 18 state feedback! This is why we are
interested in state feedbck.

(2) Equation A.R.E. is matrix quadratic equation. Looks pretty intimidating but
Computer can solve in a second.

(3) No tweaking ! Just specify {A,B,C,D} and Q and R, press return button, LQR
Routine Spits out K - done

(Of course picking Q and R is tricky sometimes but that‘s another story).

(4) Design is guaranteed optimal in the sense that it minimizes.

[ee]

qur(xo, {uJZ)zZ{xiTQ X +u; R ul.}

i=0

(Of course that doesn‘t mean its “best* in the absolute sense .-)
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4.5 LQR Problem Statement - Remarks

(5) As vary Q/R Ratio we get whole family of I{l qr‘s, 1.e. can Trade-off between state
excursion (Damping) Vs actuator effort (Control)

State
excursions

Achievable
Jz]

J ul Actuator effort
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Our optimal control has the form «,, (k) =-K (k) X opt (k)

4.6 Optimal Linear Estimation

This assumes that we have complete state Information X, (k) -not actually true!.
e.g: in SHO, we might have only a Position sensor but Not a velocity sensor.

How can be obtain “good‘ estimates of the velocity state from just observing

the position state?

Furthermore the Sensors may be noisy and the plant itself mayhg
outside disturbances (process noise) i.e. we are looking fo

Process _—

[

\ 4

V\+/

noise 1

wik) ii=Kx{xlk—1)

K

subject to

{A,B,C¥X

o
«

(xlk—1)

Amazing box which
Calculates *‘good‘ estimate
Of x(Kk) from

y(0),......y(k-1)
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Cx (k)
w\ Noise
C'b: sensor
v(k)
y(k)
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4.6 Problem Statement :
x(k +1)=A x(k)—i— B w(k)
z(k)=C x(x)
y(k)=C x(k)+v(k)
Process w(k)

0\

z(k)

(A,B,CNX

o
»

A 4

noise

3
1=K x{xlk—1)

% (xlk—=1)

>

sensor
Noise V(k )
+ <

K <E| Estimator <

y(k)

Assume also X (0 ) is Random & Gaussian and that x(k ), w(k)+V (k)

are all mutually Independent for all k.

Find: X (k|k—]) Optimal estimate of x(k) given Y, Y,
Such that “mean squared error
E| |x(k)- 2 (kik = 1) ] | minimat
Fact from statistics: )Ac(k‘ k —]): E[x(k) ‘ (Y »eemr Ve )]
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4.6 Kalman Filter

The Kalman filter is an efficient algorithm that computes the new )ACH il ( the linear-least-mean

( square estimate) of the system state vector X, , given {yO yl.} ,by updating the old estimate

.....

A

xi\i—z and old 351-‘1-_] (error) .
—_— X ] > Kalman I )%i+1 —
l1— o
(old estimate) Filter (new estimate)
(step i)
— P | pi+1|i .
(old error variance) (new error variance)

2
Yi

2 (new measurement)

Pii-1 = Hxi|i—]

The Kalman Filter produces X, ,. from X,

i+1]i ii-1 ( rather than )Acl.

), because it “tracks” the system

i
“dynamics”. By the time we compute )Acl.l. from )Acl. ._; »the system state has changed from

x; to x;,, = Ax, + Bw,
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4.6 Kalman Filter

The Kalman Filter algorithm can be divided in a measurement update and a time update:

Kalman Filter

A

X.

li-1— )

update

pi\i—z__>

Measure.

Time
update

> xi+1|i

Yi

Measurement update (M.U.):

A
X
i = l\,

Py = Piji-1 —

Time Update (T.U.):

z+]‘

l‘l

—Ax‘

CT(Cp e +V) Cp,._,

pi+1\i = ApiiAT +BWB'

With initial conditions:

Xoj = 0

150\—1 =X,

> pi+]|i

1Py CT(CP Ji-1 CT+V) ()’i_C’ACn-z)
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4.6 Kalman Filter

By pluggin M.U. equations into T.U. equations. One can do both steps at once:

l+]‘ — A'x

i
= A)Acii—z T Apii—]CT (Cpl.l._]CT +V)_] (yi B C)Acii—f)

—Ax| +Ll.(yl Cx|l)

l+]|

where L. = A(pl.|i_]CT (Cpl.|l._]CT -I—V)—J)

Pivgi = Api|iAT +BWB'

=A [pi|i—] l|l CT (Cpl|l ]CT +V)_]Cpi|i—] ]AT +BWBT

pi+1\i = ApiiAT +BWB' — Apii—]CT (Cpii—ICT T V) (Cpu ])AT

Known as discrete time Riccati Equation a5
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4.6 Picture of Kalman Filter

X. 7 X. Z.
B 7] i C
<
A | ‘
+
NS
g A
: Kalman Filter
: . A
I A o
| Xivs i i1 Yilie1 |
> -1 >
: & Z"] C —®
|
I \
|
I
| Al €i
I
I
I
I
: Z, |
I
L o e e e e e e e e e e e e e 2 D S N o e e e e e e e e

Time varying gain

Continue%ﬁ.



4.6 Picture of Kalman Filter

Plant Equations:

x;,; = Ax, + Bu,
=Cx; +v,

Kalman Filter:

—Ax| + L, (yl Yijie 1)
=Cx,

l+]|

l| i—1 l| i—1

If v=w=0=> Kalman filter can estimate the state precisely in a finite number of steps.
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4.6 Kalman Filter

Remarks:
(1) Since y, = Cx, +v, and )A/l.‘l._ , = CX, can write estimator equation as
Xivtli = A Xijies T L, (C x,+v,=C i i—])

=(A-LC)%, _ +LCx +v,
i i i-1 i i i

can combine this with equation for X, ;

Xitl . A 0 Xi + B 0 W
)Aci+1|i - LiC A_LiC X, —

Z C 0 || x
_)A’i| i~1 0 C

(2) In practice, the Riccati equation reaches steady state in a few steps. People
Often run with steady-state K.F.i.e

_ T T -1
Where L .=Ap C'(CP C"+V)
p.=Ap A" +BWB' —Ap_ C'(CP,C" +V)'CP_ A
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4.7 LQG Problem

Now we are finally ready to solve the full control problem.

g
f'\
4\
N—
fe
A\
o

A 4

\f
@

Given:

k41 k k k
Zk=ka
yk=ka+vk

W,V  both Gaussian
For Gaussian, K.L. gives the absolute best estimate
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4.7 LQG problem

Separation principle: ( we won’t prove)

The separation principle states that the LGQ optimal controller is obtained by:

(1) Using Kalman filter to obtain least squares optimal estimate of the plant state,

i.e.: Let Xc(k) = J%k‘k_z

(2) Feedback estimated LQR- optimal state feedback

u(k) ==K g % (K

=KLoR *K—1

1.e. can treat problems of
- optimal feedback and
- state estimate separately.
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4.7 Picture of LQG Regulator

'xk+1

"— B

»—1| B
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4.7 LQG Regulator
=Axk +( —Buk)+wa
2y =ka

i =ka+vk

X

k+1 k

Plant

i = A% +Bu, +L|y, —Ci
LQG Controller || k + 1k klk —1 k [yk kk—])

=K k=

] iy
+s=alsa+0 —ATSB[R + BTSB} Bl sA

k:—[R+BTSB}
T 771
L=APC [V+CPC } +P

iy
—apal + pw? —APCT[V + CPCT} cecT
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4.7 Problem Statement (in English)

Want a controller which takes as input noisy measurements, y, and produces as output a
Feedback signal ,u, which will minimize excursions of the regulated plant outputs (if no pole
-zero cancellation, then this is equivalent to minimizing state excursions.)

Also want to achieve “regulation” with as little actuator effort ,u, as possible.

Problem statement (Mathematically)
Find: Controller H (z) =C (z[ —A )_] B +D
C C C C

X
Ui H( 2) N Yk

{AC’BC’CC’DC }

y 3

Controller: X, (k +]) =A x(k +])+ B, y(k)
y.(k)=C, x,(k)

Which will minimize the cost

Limt { T T
J = Elx, Ox, tu, Ru
Where LOG k="k k k&
xk+]=Axk+(—Buk)+wak k — o0 e
Rms “state” Rms “actuator”
Plant 3 = C X excursions  effort
. =Cx +v,
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4.7 Problem Statement

Remarks:

(1). Q and R are weigthing matrices that allow trading off of rms u and rms x.

2)if Q= CTp C; p >0 then trade off rms z VS rms u

(3). In the stochastic LQR case, the only difference is that now we don’t have complete state
information y, = Cx; +v, we have only noisy observations

1 .e can’t use full state feedback.

Idea: Could we use estimated state Feedback? (i.e. K x k- ])
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4.7 Problem Statement

(5) We can let Q/R ratio vary and we’ll obtain family of LQG controllers. Can
Plot rms z vs rms u for each one
- Trade-Off curves

rms Z 1
ACHIEVABLE
LQG, Q/R=0.01
Zrms(l) _____
I X other
I
I LQG, Q/R=100
_____ R
Z.2) .
I
I I
: | R
v, ) U2 rms U
So by specifying (1) system model, (2) noise variances, (3) optimally criterion

J Loc» and plotting trade off curve completely specifies limit of performance of

System 1. € which combinations of (Z Urms) are achievable by any controller

rms
-good “benchmark curve”.
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