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AN ERLANG-BASED FRONT END

FRAMEWORK FOR




Duties of Front End Computers

Read and set hardware, field-bus devices
Communicate with rest of controls system
Respond to timing system
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Front End Framework Software

Provide for different field bus device drivers
Map between hardware and database
Support standard communication protocols
Run other algorithms (e.qg. PID loops)
Manage multiple connections

Alarm limit checking, alarm posting
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Fermilab’s Old Framework

Functional, but not pretty ("C++ written in C")
Locked to VxWorks

Core is mostly reliable, but

Shared memory model means one rogue
process can take down the whole front-end.
Driver developers responsible for many
mundane tasks: argument checking,
alignment issues, ...
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The New Fermilab Framework

Erlang and Linux Based
Totally re-implemented
Functional programming
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Functional Languages
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More Than Just Parentheses!
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Some Erlang Syntax

A ! {b(C,D)}.

f1(a(b(c())))

{[1,[2,[3,4,[5,61111, (117}

[]1->CPid!{e, 100}; [{_, V}]-> CPid!{ok, 1}
<<0,0>> <<0:16, DI:32, Val:16>>,

M, 5, U} = now(),

f([1) -> [;F([{H1,H2}T]) -> {<<H1:32>>,f(T)}.
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Basic Erlang Functions

pattern match on
argument for complexity

/ decomposition
fact(o) -> 1;
fact(N) when N>o ->
N * fact(N-1).

AN

recursion

guard clause
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Erlang Brings:

Proven reliability

Real-time performance under Linux
~unctional style encourages testing, proof of
accuracy

High availability, distributed system
High-level language concepts
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Erlang Higher Level Concepts

Lists (of course) and tuples
[1,2,3] and {1,2,3}
Pattern Matching
{A,B,C} = now().
Simplified Concurrency
Message Passing
Pid ! Message
receive message1 -> f1(); message2 -> f2() end.
Records (structured lists), list manipulation
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Erlang: What we like

Processes are cheap
nteractive shell helps productivity
Predefined process behaviours
supervisor
gen_server
_ist manipulation for lots of connections to
ots of devices.
~unctional encourages modular
Testing philosophy
No pointers
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Erlang Helps With:

Process monitoring

Performance profiling

Test coverage tools

Deployment, packaging, versions
Console logging
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Developer Adjustments

Syntax:!., ->_;
Single assignment:
Recursion rules!
()vs[]vs{} vs<<>>
List maps and folds
Function overloading
with pattern match
fact(o) -> 1;
fact(N) when N>o ->
N * fact(N-1).
Use the Erlang tools!
Find out what they are
How do they work
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Erlang loses

Support for vxWorks and its harder real-time
But! Do we care?

Same groups lamenting loss of vxWorks also
moving more processing to FPGA hardware

Computers are pretty fast, Erlang is pretty
efficient.
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Erlang Front-end Processing
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Accomplishments

Fully Functional Front End Framework

All required protocols (read, set, plot, alarm,...)
A few test device drivers implemented:

Simple cache (settings reflected to readings)
Picomotor over TCP

Nova Near Detector monitoring
Erlang-C++ interface available
Deployed with ACSys-in-a-Box Project
See: MOPMUo39
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Why Erlang??

Why not C++7?




Technical Reasons

Concurrency, distributed this
Functionallist management that
Reliability, high-availability so-and-so
Blah blah blah real-time under Linux

And so on and so forth, et cetera, et cetera
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What Happened in 19842
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Better reasons

Motivation

Learn something new.

Innovation
"Functional programming is ‘en vogue’’ — M.
Voelter, Tuesday morning.

Productivity
Let the Run Time system do the work, not the
programmer

Fun
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Erlang Front End Team

Rich Neswold
Charlie Briegel
Jerry Firebaugh
Jimmy You

Mike Sliczniak

Bob Goodwin

Ron Rechenmacher
Charlie King

D. Nicklaus, ICALEPCS 2011



Thank you!




