
Dennis J. Nicklaus
For the Fermilab Front-End Group
ICALEPCS 2011

 Read and set hardware, field-bus devices
 Communicate with rest of controls system
 Respond to timing system

D. Nicklaus, ICALEPCS 2011

 Provide for different field bus device drivers
 Map between hardware and database
 Support standard communication protocols
 Run other algorithms (e.g. PID loops)
 Manage multiple connections
 Alarm limit checking, alarm posting

D. Nicklaus, ICALEPCS 2011

 Functional, but not pretty (“C++ written in C”)
 Locked to VxWorks
 Core is mostly reliable, but
 Shared memory model means one rogue

process can take down the whole front-end.
 Driver developers responsible for many

mundane tasks: argument checking,
alignment issues, …

D. Nicklaus, ICALEPCS 2011

 Erlang and Linux Based
 Totally re-implemented
 Functional programming

D. Nicklaus, ICALEPCS 2011

()()()((())))(()))
((((()))))(((())))
() () () () () () (()) () () () () () ((())) (()) ((()))

[[[]]] {{{}}}} [[[[]]]]

{ { [[[]]], [[]], [] ,[] } ,{ [[,[[]]],{ [] }] }
More Than Just Parentheses!

D. Nicklaus, ICALEPCS 2011

A ! {b(C,D)}.
f1(a(b(c())))
{[1,[2,[3,4,[5,6]]]],[[[]]]}
[] -> CPid ! {e, 100}; [{_, V}] -> CPid ! {ok, 1}
<<0,0>> <<0:16, DI:32, Val:16>>,
{M,S,U} = now(),
f([]) -> [];f([{H1,H2}|T]) -> {<<H1:32>>,f(T)}.

D. Nicklaus, ICALEPCS 2011

D. Nicklaus, ICALEPCS 2011

 Proven reliability
 Real-time performance under Linux
 Functional style encourages testing, proof of

accuracy
 High availability, distributed system
 High-level language concepts

D. Nicklaus, ICALEPCS 2011

 Lists (of course) and tuples
 [1,2,3] and {1,2,3}

 Pattern Matching
 {A,B,C} = now().

 Simplified Concurrency
 Message Passing
 Pid ! Message
 receive message1 -> f1(); message2 -> f2() end.

 Records (structured lists), list manipulation
D. Nicklaus, ICALEPCS 2011

 Processes are cheap
 Interactive shell helps productivity
 Predefined process behaviours
 supervisor
 gen_server

 List manipulation for lots of connections to
lots of devices.

 Functional encourages modular
 Testing philosophy
 No pointers

D. Nicklaus, ICALEPCS 2011

 Process monitoring
 Performance profiling
 Test coverage tools
 Deployment, packaging, versions
 Console logging

D. Nicklaus, ICALEPCS 2011

 Syntax: ! . , -> _ ;
 Single assignment:
 Recursion rules!
 () vs [] vs { } vs << >>
 List maps and folds
 Function overloading

with pattern match
fact(0) -> 1;
fact(N) when N>0 ->

N * fact(N-1).
 Use the Erlang tools!
 Find out what they are
 How do they work

D. Nicklaus, ICALEPCS 2011

 Support for vxWorks and its harder real-time
 But! Do we care?
 Same groups lamenting loss of vxWorks also

moving more processing to FPGA hardware
 Computers are pretty fast, Erlang is pretty

efficient.

D. Nicklaus, ICALEPCS 2011

D. Nicklaus, ICALEPCS 2011

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10

N

Processing time (ms)

Processing Time Histogram
1200 devices at 15Hz

 Fully Functional Front End Framework
 All required protocols (read, set, plot, alarm,…)

 A few test device drivers implemented:
 Simple cache (settings reflected to readings)
 Picomotor over TCP
 Noνa Near Detector monitoring

 Erlang-C++ interface available
 Deployed with ACSys-in-a-Box Project

See: MOPMU039
D. Nicklaus, ICALEPCS 2011

Why not C++?

D. Nicklaus, ICALEPCS 2011

 Concurrency, distributed this
 Functionallist management that
 Reliability, high-availability so-and-so
 Blah blah blah real-time under Linux
 And so on and so forth, et cetera, et cetera

D. Nicklaus, ICALEPCS 2011

D. Nicklaus, ICALEPCS 2011

 Motivation
 Learn something new.

 Innovation
 “Functional programming is ‘en vogue’” – M.

Voelter, Tuesday morning.
 Productivity
 Let the Run Time system do the work, not the

programmer
 Fun

D. Nicklaus, ICALEPCS 2011

 Rich Neswold
 Charlie Briegel
 Jerry Firebaugh
 Jimmy You
 Mike Sliczniak
 Bob Goodwin
 Ron Rechenmacher
 Charlie King

D. Nicklaus, ICALEPCS 2011

D. Nicklaus, ICALEPCS 2011

