Dennis J. Nicklaus
For the Fermilab Front-End Group
ICALEPCS 2011

AN ERLANG-BASED FRONT END

FRAMEWORK FOR




Duties of Front End Computers

Read and set hardware, field-bus devices
Communicate with rest of controls system
Respond to timing system

D. Nicklaus, ICALEPCS 2011



Front End Framework Software

Provide for different field bus device drivers
Map between hardware and database
Support standard communication protocols
Run other algorithms (e.qg. PID loops)
Manage multiple connections

Alarm limit checking, alarm posting

D. Nicklaus, ICALEPCS 2011



Fermilab’s Old Framework

Functional, but not pretty ("C++ written in C")
Locked to VxWorks

Core is mostly reliable, but

Shared memory model means one rogue
process can take down the whole front-end.
Driver developers responsible for many
mundane tasks: argument checking,
alignment issues, ...

D. Nicklaus, ICALEPCS 2011



The New Fermilab Framework

Erlang and Linux Based
Totally re-implemented
Functional programming

D. Nicklaus, ICALEPCS 2011



Functional Languages

000WOMO))

((CCO NMNUON)
00000000000 «)) )«
[0 §E8333% (L0111

e LLOITL ML 01,008 200 DDA 0) 3 TS

More Than Just Parentheses!

D. Nicklaus, ICALEPCS 2011



Some Erlang Syntax

A ! {b(C,D)}.

f1(a(b(c())))

{[1,[2,[3,4,[5,61111, (117}

[]1->CPid!{e, 100}; [{_, V}]-> CPid!{ok, 1}
<<0,0>> <<0:16, DI:32, Val:16>>,

M, 5, U} = now(),

f([1) -> [;F([{H1,H2}T]) -> {<<H1:32>>,f(T)}.

D. Nicklaus, ICALEPCS 2011



Basic Erlang Functions

pattern match on
argument for complexity

/ decomposition
fact(o) -> 1;
fact(N) when N>o ->
N * fact(N-1).

AN

recursion

guard clause

D. Nicklaus, ICALEPCS 2011




Erlang Brings:

Proven reliability

Real-time performance under Linux
~unctional style encourages testing, proof of
accuracy

High availability, distributed system
High-level language concepts

D. Nicklaus, ICALEPCS 2011



Erlang Higher Level Concepts

Lists (of course) and tuples
[1,2,3] and {1,2,3}
Pattern Matching
{A,B,C} = now().
Simplified Concurrency
Message Passing
Pid ! Message
receive message1 -> f1(); message2 -> f2() end.
Records (structured lists), list manipulation

D. Nicklaus, ICALEPCS 2011



Erlang: What we like

Processes are cheap
nteractive shell helps productivity
Predefined process behaviours
supervisor
gen_server
_ist manipulation for lots of connections to
ots of devices.
~unctional encourages modular
Testing philosophy
No pointers

D. Nicklaus, ICALEPCS 2011



Erlang Helps With:

Process monitoring

Performance profiling

Test coverage tools

Deployment, packaging, versions
Console logging

D. Nicklaus, ICALEPCS 2011



Developer Adjustments

Syntax:!., ->_;
Single assignment:
Recursion rules!
()vs[]vs{} vs<<>>
List maps and folds
Function overloading
with pattern match
fact(o) -> 1;
fact(N) when N>o ->
N * fact(N-1).
Use the Erlang tools!
Find out what they are
How do they work

D. Nicklaus, ICALEPCS 2011



Erlang loses

Support for vxWorks and its harder real-time
But! Do we care?

Same groups lamenting loss of vxWorks also
moving more processing to FPGA hardware

Computers are pretty fast, Erlang is pretty
efficient.

D. Nicklaus, ICALEPCS 2011



Erlang Front-end Processing

Processing Time Histogram

35000 1200 devices at 15Hz
30000
25000
20000

P4
15000
10000
5000
o
1 2 3 4 5 6 7 8 9 10

Processing time (ms)

D. Nicklaus, ICALEPCS 2011



Accomplishments

Fully Functional Front End Framework

All required protocols (read, set, plot, alarm,...)
A few test device drivers implemented:

Simple cache (settings reflected to readings)
Picomotor over TCP

Nova Near Detector monitoring
Erlang-C++ interface available
Deployed with ACSys-in-a-Box Project
See: MOPMUo39

D. Nicklaus, ICALEPCS 2011



Why Erlang??

Why not C++7?




Technical Reasons

Concurrency, distributed this
Functionallist management that
Reliability, high-availability so-and-so
Blah blah blah real-time under Linux

And so on and so forth, et cetera, et cetera

D. Nicklaus, ICALEPCS 2011



What Happened in 19842

D. Nicklaus, ICALEPCS 2011



Better reasons

Motivation

Learn something new.

Innovation
"Functional programming is ‘en vogue’’ — M.
Voelter, Tuesday morning.

Productivity
Let the Run Time system do the work, not the
programmer

Fun

D. Nicklaus, ICALEPCS 2011



Erlang Front End Team

Rich Neswold
Charlie Briegel
Jerry Firebaugh
Jimmy You

Mike Sliczniak

Bob Goodwin

Ron Rechenmacher
Charlie King

D. Nicklaus, ICALEPCS 2011



Thank you!




