Distributed Software
Infrastructure for
Scientific Applications

Miron Livny
Center for High Throughput Computing
Morgridge Institute for Research and
University of Wisconsin-Madison

——— o ————0

EEEEEEEEE

MORGRIDGE HIGH THROUGHPUT T
COMPUTING

MMMMMMM

Disclaimer

I am here to share experience, tools
and infrastructure and to offer
collaboration - not to present solutions,
as developing the methodologies and
tools to build cost effective,
dependable distributed software is still
very much work in progress.

CENTER FOR
MORGRIDGE HIGH THROUGHPUT ~ Coeuvs
COMPUTING

DDDDDDD

Who are we?

We are part of a Computer Science
department (ranked 11*h in the US!) and have
been working on distributed software tools
since the early 80's. So far we failed to
engage any other faculty from the
department (or other universities) in our
software engineering problems/challenges.
So all we know and do is self-taught and the

result of ongoing experimental work.

CENTER FOR

MORGRI DGE HIGHCTOHW}}L%UN%HPUT WSCRSIN

FFFFFFFFFFFFFFFFFFFFFF
uuuuuuu

Experience

> For more than two decades we have been working
on the Condor High Throughput Computing (HTC)
software system that has been adopted by a wide
range of research and commercial entities.

> For more than a decade we have been leading the
Software Area of the Open Science Grid (0SG6)
which provides a national fabric of Distributed

HTC services in the US.

CENTER FOR

MORGRIDGE SEpBIERIOR -
COMPUTING VVIOLUUVINOIN

nnnnnnn

Key points

> Importance of infrastructure - people,
tools and computing capacity.

> Complexity of the software supply chain.
We are both consumers and producers of
software artifacts.

> The risks of new/hot, unproven/emerging
and in many cases short lived technologies

> The importance of independent and

engaged users

R
MORGRIDGE HIGH THROUGHPUT e Lyersiry
COMPUTING WISCONSIN

DDDDDDD

Red Hat Expands M essaging, Realtime and Grid
Technology Capabilitiesto Advance Cloud L eadership

October 14th, 2010 by Enterprise MRG Team

Red Hat today announced the availability of Red Hat Enterprise
1.3, including updates to the product’s Messaging, Realtime
and Grid technologies, which provide a key technology base for
Red Hat Cloud Foundations, a solution set that offersa
comprehensive set of tools to build and manage a private cloud.
Red Hat Enterprise MRG provides an integrated platform for high-
performance distributing computing. First released in June 2008,
Enterprise MRG has since enabled customers around the world to
meet their messaging, realtime and grid computing needs, offering:

CENTER FOR
MORGRIDGE HIGH THROUGHPUT e apyasiry
INSTITUTE FOR RESEARCH COMPUTING WISCONSIN

DDDDDDD

Enterprise MRG'’s Grid functionality, based on the Condor Project
created and hosted by the University of Wisconsin, Madison, brings
the advantages of flexible deployment to awide range of
applications and workloads.

With Grid, customers can build cloud infrastructures to aggregate
multiple clouds. It provides integrated support for virtualization and
public clouds and easier aggregation of multiple cloud resources into
one compute pool. In addition, it provides more streamlined and
flexible computing across remote grids with servers, clusters and
cycle-harvesting from desktop PCs as well as across private, public
and hybrid clouds. MRG Grid is akey base component of Red Hat
Cloud Foundations.

N e L T e——

CENTER FOR
MORGRIDGE HGH THROUGHPOT e ey
INSTITUTE FOR RESEARCH COMPUTING

DDDDDDD

CONGRATULATIONS
DR. MIRON LIVNY AND CHTC TEAM

FIRST RECIPIENT CLOUD LEADERSHIP AWARD e

redHat

Case 1: 10,000 Cores “Tanuki”

e Run time = 8 hours

e 1.14 compute-years of computing executed every
hour

e Cluster Time = 80,000 hours = 9.1 compute years.
e Total run time cost = ~$8,500

e 1250 cl.xlarge ec2 instances (8 cores / 7-GB RAM)

e 10,000 cores, 8.75 TB RAM, 2 PB of disk space

e \Weighs in at number 75 of Top 500 SuperComputing
list

e Costto run =~ $1,060 / hour

s CYC LE _Ol APUTIN %lsgl;o%ﬂ{ OF CLOUD HPC

Customer Goals

e Genentech: “Examine how proteins bind to each
other in research that may lead to medical
treatments.”

- www.networkworld.com

e Customer wants to test the scalability of
CycleCloud: “Can we run 10,000 jobs at once?”

e Same workflow would take weeks or months on
existing internal infrastructure.

s CYC LE _Ol APUTIN %lsgl;o%ﬂ{ OF CLOUD HPC

” System Components

e Condor (& Workflow)

e Chef

e CycleCloud custom CentOS AMIs
e CycleCloud.com

e AWS

€ — CYC LE C OM P U TI N G - 7 TCH:EXSEC(g(IFQEVER OF CLOUD HP;Z

Run Timeline

e 12:35 - 10,000 Jobs submitted and requests for
batches cores are initiated

e 12:45 — 2,000 cores acquired
e 1:18 — 10,000 cores acquired
¢ 9:15 — Cluster shut down

CYCLECOMPUTING CYCLECL
N NIV U 1N\ THE EASE & POWER OF CLOUD HPC

%&per -hour, 30, > clustermbuili=en-Awmazon
C2 cloud

By Jon Brodkin | Published 22 days ago

A vendor called Cycle Computing is on a mission to demonstrate the
potential of Amazon’s cloud by building increasingly large clusters on
the Elastic Compute Cloud. Even with Amazon, building a cluster takes
some work, but Cycle combines several technologies to ease the
process and recently used them to create a 30,000-core cluster running
CentOS Linux.

The cluster, announced publicly this week, was created for an unnamed
“Top 5 Pharma” customer, and ran for about seven hours at the end of
July at a peak cost of $1,279 per hour, including the fees to Amazon
and Cycle Computing. The details are impressive: 3,809 compute
Instances, each with eight cores and 7GB of RAM, for a total of 30,472
cores, 26.7TB of RAM and 2PB (petabytes) of disk space. Security was
ensured with HTTPS, SSH and 256-bit AES encryption, and the cluster
ran across data centers in three Amazon regions in the United States
and Europe. The cluster was dubbed “Nekomata.”

7 CYCLECOMPUTINC CYCLE

THE EASE & POWER OF CLOUD HPC

Some (Condor) Numbers

Over the past year every month we have:

>

>
>
>

>

SN

Released a new version of Condor to the public
Performed over 170 commits to the codebase
Modified over 350 source code files

Changed over 8.5K lines of code (Condor source
code written at UW-Madison as of June 2011 sits
at 922K LOC)

Compiled about 2.5K builds of the code for testing
purposes

Ran 930K regression tests (functional and unit)

_ENTER FO

C R
MORGR]DGE HIGH THROUGHPUT — aw yLRSITY
COMPUTING WISCONSIN

TTTTTTTTTTTTTT

nnnnnnn

Open Science Grid (
DHTC at the National Level

)

and Labradc

Ontario Québec
Gulf of St
Lawrence
North
Dakota New
Minnesota Brunswick Prin
_ > Nova — Edw:
South Wisconsin ‘9 Maine Scotia. Islar
Dakota Michigan
: Nebrask ovd N NvertTom hi
" ‘ ebraska " Pennsylvar's ew Hampshire
g . dl - " y “ Wine ~-io Massachusetts
@ W= - Nevada.'l iy o0 v Rhode Island
1 &0 N utah v Echiorado "% : West
=" U5 S A Kansas JJ‘IISSOUH Virginia Connecticut
\Z, lifornia ’ 4 LT Lt g New Jersey
1l 2 A
- . S Ok’ 3 e Te’\)%) d Delaware
:) J’ # \ ! Maryland
- Arizona W
v . outh
Jg’) 4 Mexico , Miss R'P'b Carolina [éis'trictbpl
: oy ‘g abama olumbia
)
_. o b Texas Q Georgia
: .
LounJa
J J Atlantic
o Ocean
CGIlilfnot B2 Gulf of gor
alnomia e .
> Mexico
2 b
-, México &
o v
o)
e d

Cuba

Dominican

Some OSG numbers

As we move the Virtual Data Toolkit

(VDT) to RPMs, on 10/12/11 we have:

* development
* development
* testing

* testing

* production
* production

SN

MORGRIDGE

RRRRRRRRRRRRRRRRRRRR

source RPMs:

32-bit binary RPMs:

source RPMs:

32-bit binary RPMs:

source RPMs:

32-bit binary RPMs:

HT

CENTER FOR

HIGH THROUGHPUT
COMPUTING

186
427
179
417
24
37

lllllllllll

nnnnnnn

Services, Tools

and

Infrastructure

CENTER FOR

MORGRIDGE HIGH THROUGHPUT THE UNlyLRsITY
INSTITUTE FOR RESEARCH COMPUTING WECONSIN

HHHHHHH

Vulnerability Assessment Service

TTTTTTTTTTTTT

-Barton Miller
-Jim Kupsch
-Karl Mazurak
-Daniel Crowell
-Wenbin Fang
-Henry Abbey

18

Universitat
Autonoma
L/ de Barcelona

—Elisa Heymann
—Eduardo Cesar
-Jairo Serrano
—Guifré Ruiz
—Manuel Brugnoli

Vulnerability Assessment of Middleware

+ We started by trying to do something simple:

Increase our confidence in the security of some
critical Grid middleware.

*+ We ended up developing a hew 3
manual methodology:

First Principles Vulnerability
Assessment

- We found some serious vulnerabilities ... and more
vulnherabilities ... and more.

19

Vulnerability Assessment of Middleware

First Principles Vulnerability Assessment:
* An analyst-centric (manual) assessment process.
* You can't look carefully at every line of code so:

Don't start with known threats ...
.. instead, identify high value assets in the
code and work outward to derive threats.

e Start with architectural analysis,
then identify key resources and
privilege levels, component interactions
and trust delegation, then focused component
analysis.

20

Studied Systems

G Condor, University of Wisconsin

St Compuiing Batch queuing workload management system
15 vulnerabilities 600 KLOC of C and C++

SRB, SDSC

Storage Resource Broker - data grid
5 vulnerabilities 280 KLOC of C

W) Presey MyProxy, NCSA

Credential Management Service Credentlal Management SyStem

5 vulnerabilities 25 KLOC of C
1 .
glExec, Nikhef
NI!!EF Identity mapping service
5 vulnerabilities 48 KLOC of C

2% Fermilab Gratia Condor Probe, FNAL and Open Science Grid
| Feeds Condor Usage into Gratia Accounting System

3 vulnerabilities 1.7 KLOC of Perl and Bash

e CRGIR,. Condor Quill, University of Wisconsin
Wi mighthioughput Compuiing - DBMS Storage of Condor Operational and Historical Data
6 vulnerabilities 7.9 KLOC of C and C++

21

Studied Systems

' Wireshark, wireshark.org
_ Network Protocol Analyzer
in progress 2400 KLOC of C
Condor Privilege Separation, Univ. of Wisconsin

Restricted Identity Switching Module
21 KLOC of C and

INFN VOMS Admin, INFN
C Web management interface to VOMS data
35 KLOC
miyersit
T

.

CrossBroker, Universitat Autonoma de Barcelona

Resource Mgr for Parallel & Interactive Applications
97 KLOC of C++

ARGUS 1.2, HIP, INFN, NIKHEF, SWITCH
glLite Authorization Service

KLOC of Java and C

42

22

In Progress

NN VOMS Core INFN
Network Protocol Analyzer
C in progress 161 KLOC of Bourne Shell,
@ chrome C++and C

Google Chrome, Google
Web browser
in progress 2396 KLOC of C and C++

23

Tools our developers use ..

Git, CMake, CPack, Gnu Make, Coverity,
Metronome, GitTrac, Google coredumper,
MySQL to store build/test results, Microsoft
Visual Studio 2008 plus Platform SDK, gSoap,
valgrind, google-perftools, kcachegrind,
DevPartner, gcc, g++, g77, Java, gdb, Perl,
Python, GNU tar, rpmbuild, dpkg, gzip & 7zip,
patch, lex, yacc, PHP, WiX, CVS, LaTeX, bash,
awk, Ruby, gitweb, Cygwin, GhosTscripT,

latex2html, cfengine, puppet, sed ..
P pemillichabeiig ¢ it

MORGRIDGE HIGH THROUQH[UT uuuuu iyasiry

nnnnnnn

Condor & Coverity
> Started using Coverity in 2008

* First run thousands of “errors”
* Can take 10 minutes to triage each one

> Strategy:

* Ignore existing errors. 15 year-old "bugs” can't
be that bad

* Re-run Coverity every release. Aggressively
triage and fix all new "bugs” - only ~ 50 new
ones to look at

* Fix original bugs as time permits

HM—HI'—@

CENTER FOR

MORGR]DGE HIGH THROUGHPUT — aw yLRSITY
COMPUTING

nnnnnnn

Experience

> Over two years, triaged all existing bugs

> Many false positives, but the few bad ones
well worth the whole effort

> Ratio roughly 10 to 1 false to real bug

> Trained developers to read Coverity
reports and language

> Then new version of Coverity came out.
New checkers found new bugs

MORGRIDGE SEpBIERIOR -
COMPUTING VVIOLUUVINOIN

nnnnnnn

Use it more frequently!

> Run Coverity on major feature before
merge to public branch - Phase II of
the transition to IPv6.

> Coverity found three show-stopper
bugs which would have taken weeks to
diagnose and debug in the field -Fixed
these in a couple of hours

SN .] — @
CENTER FOR
MORGR]DGE HIGH THROUGHPUT — aw yLRSITY
COMPUTING VVIOLUUVINOIN

nnnnnnn

Example bug

> Code was changed so that if the DNS
server failed on a lookup, a random fd
was closed, Coverity pointed out the
source code line humber of the fault

> Dynamic analysis (valgrind) wouldn't
find it as long as DNS server worked

> Fault a long way from failure

> Debuggers would only see the failure

MORGR]DGE HIGH THROUGHPUT e yLRSITY
COMPUTING WISCONSIN

nnnnnnn

Ballab

A Continuous-Integration Facility

Building Communities for SIS Workshop
Arlington, VA - Oct 2011

Todd Tannenbaum

Center for High Throughput Computing
University of Wisconsin-Madison

29

/What: 10,000 foot view \
Build and Test Lab = BaTLab

Lab Infrastructure
many different platforms, professionally
managed

Lab Software = Metronome
Performs regular builds and/or tests

User specifies source location (ex: web
server, CVS, SVN, git, ...), platforms to use,
declares what to build or test

| Results stored in RDBMS, reports visible via aj

CP web portal

30

/Why’? Continuous Integration
Can others outside your environment even

build it at all? (Escrow)
Detect problems early

Ship releases on schedule
Find problems before users

Even if code Is stable, changes are
happening both above and below the
application

Changes in OS, dependencies, user expectations

™

/

31

/ Build and TEST!

Function vs Unit

Regression tests

Scalabillity tests

“Sweep’” tests

Forward and Backwards compatibility
Cross versioning

32

/ BaTLab Infrastructure \

~50 unique platforms for builds/tests
Web portal ()

4 submit hosts

Database cluster

Backup server

Network management (DNS, DHCP, SSL)
Monitoring (Nagios, Ganglia)

Internal Infrastructure (Condor, ...)

QP /

33

Q1P

/ Impact on Condor work

With Batlab, nightly build on all ports

Bugs found within 24 hours

Usually fixed within 24 — 72 hours
® Still 24 hour latency on all platforms
® Test failures much harder to debug than build

Test failures found within 24 hours
Unless masked by build failures (problem)

Developer one-off ‘workspace builds’
Much better than before, but still lots of steps

™

34

Continuous Builds

Hover here to have this section explained

Continuous blacklist: x86_64_rhap_5.3-updated

/Web portal snapshot

Green build/test here at 10 am

Buid | (08| |02 19 [18h7| Pehshars] | 09 o2 | [wopsazfis| fs| |2
x86 64 opensuse 11.4-updated

Test

suid [10| [o8jo2f22/20] |ojsjrz] [16hshaas] h2] |z o] [oslor 22202928 7fue| fish2| |2
x86 64 rhap 5

Test

suid |10 |08 [22f20fs| |h7| [tehshaiz| h2fua| |eo 08| 22[20)19)18)17]16f15 11
x86 rhas 3 —

e

l

G

Click here to find out

What happened here?

NMI

35

What happened?

Continuous Build - x86_64 rhap_5
5b630d4bbf6fdadf081ffdab65ad9df3182f7c48
Commit info | Log from previous

375395 2011-10-05 11:45:04

Continuous Build - x86_64_rhap_5
c6f500cbed80777fdec8adcasf4cde8026d5b15d
Commit info | Log from previous

Continuous Build - x86_64
a8b91be0756bad194d7e3213134054
Commit info | Log from previous

375386 2011-10-05 10:45:03

375376 2011-10-05 08:47:45

Click here

36

Whom to blame?

projects / condor.qit / log

summary | shortlog | log | commit | commitdiff | tree
first - prev - next

condor.git

2 days ago ===VersionHistory:Completed=== ===GT=== #2514

commit | commitdiff | tree Erik Erlandson [Wed, 5 Oct 2011 15:30:00 +6060]

===VersionHistory:Completed=== ===GT=== #2514

2 days ago Added a regression test for basic partitionable slot capability ===GT:Fixed=== #2514

commit | commitdiff | tree Erik Erlandson [Wed, 5 Oct 2011 15:26:29 +0000]

Added a regression test for basic partitionable slot capability ===GT:Fixed=== #2514

2 days ago add cygwin\bin to the front of the path in remote_pre for windows
commit | commitdiff |tree John (TJ) Knoeller [Wed, 5 Oct 2011 15:11:11 +0060]
add cygwin\bin to the front of the path in remote_pre for windows

tests in NMI to force cygwin perl to be used to run batch_test.pl.
===VersionHistory:None===

Condor is a specialized workload management system for compute-intensive jobs.

NM] a7

/Back INn business \

Continuous Builds Yell at Erik here

Continuous blacklist: x86_64_rhap_5.3-updated

ooy (215 S}

Hover here to have this section explained

x86 64 opensuse 11.4-updated]

x86 64 rhap 5

x86 rhas 3

Test fixed here

. NMI i

Builds anc
Soln: Job

/“Hourly builds” on three
platforms

esp tests fall behind
Prio == Qdate

Dramatica

oushes

ly improved # of green nightly

ouilds — almost always, except for late

Lesson learned — more build per day, better

™

39

Usage by Project, last 90 days

git

icerec
MolSurf
pylint
iRODS
tutorial
bucky

VDT

EF
OPeNDAP
nimbus
GSI-OpenSSH
safefile
CorralWMS
MyProxy
glideinWMS
Globus
Cactus
charm

Bro

Rose Compiler
POINT
Pegasus
DMTCP
OGCE
Condor

QP

[EEY
[EEY

0

100

10000 100000

E Builds

H Tests

40

=<—= Adding software to the VDT

ien rid

Decide what software Is needed
Intake

Prepare

Internal testing

Integration Testbed

Release

. Support

N oA WN R

\”‘/» Step 3: Prepare
Optlon 1. We do all the work
Package & build
— Provide configuration
— Test
— Document

Option 2: Borrow from the community

— If the software Is already packaged
appropriately, use It.

— May still need to provide configuration
— Still need to test
— Still need to document

<= Building & Distributing the VDT

Open Science Grid
OSG Software Infastructure
Developer Sources Builds Main repository Users & Mirrors
(anywhere) (.cs.wisc.edu) (.batlab.org) (.iu.edu) (anywhere)
Postgres DB
: Yumrepol pyp | Users download
(made | goryer with yum
Koji Hub with
0sg-build Request build . XBS169 mash)
(comp:se source RPM) (push source RPM) Auth | aTum repo >
rsync_ | Mirrors created
BS. Stage server with rsync
B4. Sign RPM
Subversion repo & q
Dev: ¢+——» (https with
name/pass)
B2. B3.
Build Return
New RPMs
v
Upstream Sources K(()glmgrger
(http download, embed md5)
ssh upload)

Build process is
labeled B1 - B4

= Step 4: Internal Testing

Open Science Grid

e Dally testing Is essential
— Reports to developers

— Test against:
= All supported operating systems

= Pre-releases of operating systems (find out
problems before they strike)

= Step S:
Integration Testbed

 Wide-area OSG testbed with real-world
(I.e. not developer) environments

* Verify installation process

 Run appropriate tests
— Small updates require basic tests

— Large updates require participation from
users to ensure their scientific workflows
still work

== Testing and Deployment

Open Science Grid
VTB ITB
Announce pending Announce pending ITB coordinator
release to VTB release to ITB preps OSG cache
v v v « v
VDT prepares VTB coord. VDT updates ITB coordinator GOC updates VDT updates GOC updates
2.0.89 cache prepares cache 2.0.99 cache preps ITB cache 0SG cache 2.0.0 cache OSG cache
[| |
[L4

VTB Coordinator ITB Coordinator VDT announces to
runs test install runs test install vdt-discuss & GOC

Announce to VTB | Announce to ITB = ITB sites restore ITB coordinator

r (w/ release notes) |~ r (w/ release notes) from backup updates Twiki

VTB does fresh ITB sites make GOC sends

d‘;yas S | installs & test Maks changes vs backups Maks changee announcement

v days v 1
L VTB provides ITB sites use vdt-
feedback updater & test
L ITB provides
feedback
s

46

We are missing a forum to
discuss challenges, share
experiences, talk about

failures and report
successes

SR s H[

EEEEEEEEE
MORGRIDGE HIGH THROUGHPUT
COMPUTING

TTTTTTTTTTTTTTTTTTTT

