
Miron Livny
Center for High Throughput Computing
Morgridge Institute for Research and

University of Wisconsin-Madison

Distributed Software
Infrastructure for

Scientific Applications

Disclaimer

I am here to share experience, tools
and infrastructure and to offer
collaboration - not to present solutions,
as developing the methodologies and
tools to build cost effective,
dependable distributed software is still
very much work in progress.

Who are we?

We are part of a Computer Science
department (ranked 11th in the US!) and have
been working on distributed software tools
since the early 80’s. So far we failed to
engage any other faculty from the
department (or other universities) in our
software engineering problems/challenges.
So all we know and do is self-taught and the
result of ongoing experimental work.

Experience
› For more than two decades we have been working

on the Condor High Throughput Computing (HTC)
software system that has been adopted by a wide
range of research and commercial entities.

› For more than a decade we have been leading the
Software Area of the Open Science Grid (OSG)
which provides a national fabric of Distributed
HTC services in the US.

Key points
› Importance of infrastructure - people,

tools and computing capacity.
› Complexity of the software supply chain.

We are both consumers and producers of
software artifacts.

› The risks of new/hot, unproven/emerging
and in many cases short lived technologies

› The importance of independent and
engaged users

Red Hat Expands Messaging, Realtime and Grid
Technology Capabilities to Advance Cloud Leadership

October 14th, 2010 by Enterprise MRG Team

Red Hat today announced the availability of Red Hat Enterprise
MRG 1.3, including updates to the product’s Messaging, Realtime
and Grid technologies, which provide a key technology base for
Red Hat Cloud Foundations, a solution set that offers a
comprehensive set of tools to build and manage a private cloud.
Red Hat Enterprise MRG provides an integrated platform for high-
performance distributing computing. First released in June 2008,
Enterprise MRG has since enabled customers around the world to
meet their messaging, realtime and grid computing needs, offering:
…

…
Enterprise MRG’s Grid functionality, based on the Condor Project
created and hosted by the University of Wisconsin, Madison, brings
the advantages of flexible deployment to a wide range of
applications and workloads.
…
With Grid, customers can build cloud infrastructures to aggregate
multiple clouds. It provides integrated support for virtualization and
public clouds and easier aggregation of multiple cloud resources into
one compute pool. In addition, it provides more streamlined and
flexible computing across remote grids with servers, clusters and
cycle-harvesting from desktop PCs as well as across private, public
and hybrid clouds. MRG Grid is a key base component of Red Hat
Cloud Foundations.

Case 1: 10,000 Cores “Tanuki”
 Run time = 8 hours
 1.14 compute-years of computing executed every

hour
 Cluster Time = 80,000 hours = 9.1 compute years.
 Total run time cost = ~$8,500

 1250 c1.xlarge ec2 instances (8 cores / 7-GB RAM)
 10,000 cores, 8.75 TB RAM, 2 PB of disk space
 Weighs in at number 75 of Top 500 SuperComputing

list
 Cost to run = ~ $1,060 / hour

Customer Goals
 Genentech: “Examine how proteins bind to each

other in research that may lead to medical
treatments.”
- www.networkworld.com

 Customer wants to test the scalability of
CycleCloud: “Can we run 10,000 jobs at once?”

 Same workflow would take weeks or months on
existing internal infrastructure.

System Components

 Condor (& Workflow)
 Chef
 CycleCloud custom CentOS AMIs
 CycleCloud.com
 AWS

Run Timeline
 12:35 – 10,000 Jobs submitted and requests for

batches cores are initiated
 12:45 – 2,000 cores acquired
 1:18 – 10,000 cores acquired
 9:15 – Cluster shut down

$1,279-per-hour, 30,000-core cluster built on Amazon
EC2 cloud

By Jon Brodkin | Published 22 days ago

A vendor called Cycle Computing is on a mission to demonstrate the
potential of Amazon’s cloud by building increasingly large clusters on
the Elastic Compute Cloud. Even with Amazon, building a cluster takes
some work, but Cycle combines several technologies to ease the
process and recently used them to create a 30,000-core cluster running
CentOS Linux.

The cluster, announced publicly this week, was created for an unnamed
“Top 5 Pharma” customer, and ran for about seven hours at the end of
July at a peak cost of $1,279 per hour, including the fees to Amazon
and Cycle Computing. The details are impressive: 3,809 compute
instances, each with eight cores and 7GB of RAM, for a total of 30,472
cores, 26.7TB of RAM and 2PB (petabytes) of disk space. Security was
ensured with HTTPS, SSH and 256-bit AES encryption, and the cluster
ran across data centers in three Amazon regions in the United States
and Europe. The cluster was dubbed “Nekomata.”

Some (Condor) Numbers
Over the past year every month we have:
› Released a new version of Condor to the public
› Performed over 170 commits to the codebase
› Modified over 350 source code files
› Changed over 8.5K lines of code (Condor source

code written at UW-Madison as of June 2011 sits
at 922K LOC)

› Compiled about 2.5K builds of the code for testing
purposes

› Ran 930K regression tests (functional and unit)

www.cs.wisc.edu/~miron

Open Science Grid (OSG)
DHTC at the National Level

Some OSG numbers

As we move the Virtual Data Toolkit
(VDT) to RPMs, on 10/12/11 we have:

 development # source RPMs: 186
 development # 32-bit binary RPMs: 427
 testing # source RPMs: 179
 testing # 32-bit binary RPMs: 417
 production # source RPMs: 24
 production # 32-bit binary RPMs: 37

Services, Tools
and

Infrastructure

18

Vulnerability Assessment Service

–Elisa Heymann
–Eduardo Cesar
–Jairo Serrano
–Guifré Ruiz
–Manuel Brugnoli

–Barton Miller
–Jim Kupsch
–Karl Mazurak
–Daniel Crowell
–Wenbin Fang
–Henry Abbey

19

Vulnerability Assessment of Middleware
• We started by trying to do something simple:

Increase our confidence in the security of some
critical Grid middleware.

• We ended up developing a new
manual methodology:
First Principles Vulnerability

Assessment

• We found some serious vulnerabilities … and more
vulnerabilities … and more.

20

Vulnerability Assessment of Middleware
First Principles Vulnerability Assessment:
• An analyst-centric (manual) assessment process.
• You can’t look carefully at every line of code so:

then identify key resources and
privilege levels, component interactions
and trust delegation, then focused component
analysis.

Don’t start with known threats …
… instead, identify high value assets in the
code and work outward to derive threats.

• Start with architectural analysis,

21

Studied Systems
Condor, University of Wisconsin
Batch queuing workload management system
15 vulnerabilities 600 KLOC of C and C++

SRB, SDSC
Storage Resource Broker - data grid
5 vulnerabilities 280 KLOC of C

MyProxy, NCSA
Credential Management System
5 vulnerabilities 25 KLOC of C

glExec, Nikhef
Identity mapping service
5 vulnerabilities 48 KLOC of C

Gratia Condor Probe, FNAL and Open Science Grid
Feeds Condor Usage into Gratia Accounting System
3 vulnerabilities 1.7 KLOC of Perl and Bash

Condor Quill, University of Wisconsin
DBMS Storage of Condor Operational and Historical Data
6 vulnerabilities 7.9 KLOC of C and C++

22

Studied Systems

Wireshark, wireshark.org
Network Protocol Analyzer
in progress 2400 KLOC of C

Condor Privilege Separation, Univ. of Wisconsin
Restricted Identity Switching Module

21 KLOC of C and
C++

VOMS Admin, INFN
Web management interface to VOMS data

35 KLOC
of Java and PHP

CrossBroker, Universitat Autònoma de Barcelona
Resource Mgr for Parallel & Interactive Applications

97 KLOC of C++

ARGUS 1.2, HIP, INFN, NIKHEF, SWITCH
gLite Authorization Service

42
KLOC of Java and C

23

In Progress

VOMS Core INFN
Network Protocol Analyzer
in progress 161 KLOC of Bourne Shell,

C++ and C

Google Chrome, Google
Web browser
in progress 2396 KLOC of C and C++

Tools our developers use …
Git, CMake, CPack, Gnu Make, Coverity,
Metronome, GitTrac, Google coredumper,
MySQL to store build/test results, Microsoft
Visual Studio 2008 plus Platform SDK, gSoap,
valgrind, google-perftools, kcachegrind,
DevPartner, gcc, g++, g77, Java, gdb, Perl,
Python, GNU tar, rpmbuild, dpkg, gzip & 7zip,
patch, lex, yacc, PHP, WiX, CVS, LaTeX, bash,
awk, Ruby, gitweb, Cygwin, Ghostscript,
latex2html, cfengine, puppet, sed …

Condor & Coverity
› Started using Coverity in 2008
First run thousands of “errors”
Can take 10 minutes to triage each one

› Strategy:
Ignore existing errors. 15 year-old “bugs” can’t

be that bad
Re-run Coverity every release. Aggressively

triage and fix all new “bugs” – only ~ 50 new
ones to look at

 Fix original bugs as time permits

Experience

› Over two years, triaged all existing bugs
› Many false positives, but the few bad ones

well worth the whole effort
› Ratio roughly 10 to 1 false to real bug
› Trained developers to read Coverity

reports and language
› Then new version of Coverity came out.

New checkers found new bugs

Use it more frequently!

› Run Coverity on major feature before
merge to public branch – Phase II of
the transition to IPv6.

› Coverity found three show-stopper
bugs which would have taken weeks to
diagnose and debug in the field -Fixed
these in a couple of hours

Example bug
› Code was changed so that if the DNS

server failed on a lookup, a random fd
was closed, Coverity pointed out the
source code line number of the fault

› Dynamic analysis (valgrind) wouldn’t
find it as long as DNS server worked

› Fault a long way from failure
› Debuggers would only see the failure

BaTLaB
A Continuous-Integration Facility

Building Communities for SISI Workshop
Arlington, VA - Oct 2011

Todd Tannenbaum
Center for High Throughput Computing

University of Wisconsin-Madison

29

What: 10,000 foot view

 Lab Infrastructure
• many different platforms, professionally

managed

 Lab Software = Metronome
• Performs regular builds and/or tests
• User specifies source location (ex: web

server, CVS, SVN, git, …), platforms to use,
declares what to build or test

• Results stored in RDBMS, reports visible via a
web portal

30

Build and Test Lab = BaTLab

Why? Continuous Integration
 Can others outside your environment even

build it at all? (Escrow)
 Detect problems early
 Ship releases on schedule
 Find problems before users
 Even if code is stable, changes are

happening both above and below the
application
• Changes in OS, dependencies, user expectations

31

Build and TEST!

 Function vs Unit
 Regression tests
 Scalability tests
 “Sweep” tests
 Forward and Backwards compatibility
 Cross versioning

32

BaTLab Infrastructure

 ~50 unique platforms for builds/tests
 Web portal (http://nmi.cs.wisc.edu)
 4 submit hosts
 Database cluster
 Backup server
 Network management (DNS, DHCP, SSL)
 Monitoring (Nagios, Ganglia)
 Internal Infrastructure (Condor, …)

33

34

Impact on Condor work

 With Batlab, nightly build on all ports
 Bugs found within 24 hours

• Usually fixed within 24 – 72 hours
• Still 24 hour latency on all platforms
• Test failures much harder to debug than build

 Test failures found within 24 hours
• Unless masked by build failures (problem)

 Developer one-off ‘workspace builds’
• Much better than before, but still lots of steps

35

Web portal snapshot

Green build/test here at 10 am

What happened here?Click here to find out

36

What happened?

Click here

37

Whom to blame?

38

Back in business

Yell at Erik here

Test fixed here

39

“Hourly builds” on three
platforms

 Builds and esp tests fall behind
• Soln: JobPrio == Qdate

 Dramatically improved # of green nightly
builds – almost always, except for late
pushes
• Lesson learned – more build per day, better

Usage by Project, last 90 days

40

1 10 100 1000 10000 100000

Condor
OGCE

DMTCP
Pegasus

POINT
Rose Compiler

Bro
charm

Cactus
Globus

glideinWMS
MyProxy

CorralWMS
safefile

GSI-OpenSSH
nimbus

OPeNDAP
EF

VDT
bucky

tutorial
iRODS
pylint

MolSurf
icerec

git

Builds

Tests

Adding software to the VDT

1. Decide what software is needed
2. Intake
3. Prepare
4. Internal testing
5. Integration Testbed
6. Release
7. Support

Step 3: Prepare

Option 1: We do all the work
− Package & build
− Provide configuration
− Test
− Document

Option 2: Borrow from the community
− If the software is already packaged

appropriately, use it.
− May still need to provide configuration
− Still need to test
− Still need to document

Building & Distributing the VDT

43

Step 4: Internal Testing

• Daily testing is essential
− Reports to developers
− Test against:
 All supported operating systems
 Pre-releases of operating systems (find out

problems before they strike)

Step 5:
Integration Testbed

• Wide-area OSG testbed with real-world
(i.e. not developer) environments

• Verify installation process
• Run appropriate tests

− Small updates require basic tests
− Large updates require participation from

users to ensure their scientific workflows
still work

Testing and Deployment

46

We are missing a forum to
discuss challenges, share
experiences, talk about

failures and report
successes

47

