

# **Computing Challenges in Adaptive Optics for** the Thirty Meter Telescope **Corinne Boyer ICALEPCS** Grenoble, France October 10, 2011



#### This Talk

Introduction to the Thirty Meter Telescope (TMT)

- Adaptive Optics (AO) Basics
- TMT first light AO system
  - System architecture
  - Computing challenges
  - Control Algorithms
  - Conceptual Designs
- Next steps and future TMT AO challenges



- Design, build and operate a thirty meter telescope for research in astronomy at optical and infrared wavelengths
- Collaboration of University of California, Caltech, ACURA (Canada), NAOJ (Japan), the Department of Science and Technology of India, and the NAOC (China)
- Mauna Kea in Hawaii
- Ritchey-Chrétien optical design
- 30 m segmented aperture
  - 492 segments
- 3.1 m convex active secondary
- Articulated tertiary
  - Flat elliptical, 2.5m x 3.5m<sup>2</sup>
- 20 arc min FOV (15 unvignetted)
- Nasmyth-mounted instrumentation



#### Adaptive Optics (AO) Increases Telescope Sensitivity



- Performance of ground-based telescopes are limited by atmospheric turbulence
- AO Systems allow the removal in real time of the effect of atmospheric turbulence
- How it works:
  - Wavefront distortions are measured with a wavefront sensor (WFS)
  - Then corrected by a wavefront corrector or deformable mirror (DM)
  - Optimal shape of the DM are computed by a Real Time Controller (RTC) with simple matrix-vector multiply
  - Need a bright reference star nearby
  - Natural Guide Star (NGS) AO
  - Two limitations: poor sky coverage and small corrected field of view



#### Laser Guide Star Adaptive Optics (LGS AO)

- Sky coverage is increased by using artificial reference stars (Laser Guide Stars) generated by laser beams
  - Still some limitations:
    - Finite range of LGS induces a "cone effect"
      - Constellation of guide stars allow to estimate 3-d turbulence profile (using tomographic algorithms) and turbulence can be compensated in 3-d using multiple deformable mirrors: Multi Conjugate Adaptive Optics (MCAO)
    - Natural guide stars still required (but much fainter) for tip/tilt and focus correction







# TMT The TMT First Light AO architecture

THIRTY METER TELESCOPE



MCAO LGS System:

- Six LGS WFS and three loworder NGS WFS (~1.2M pixels, ~35K gradients)
- Two DMs with ~8000 actuators
- One Real Time Controller solving a 35k x 8k control problem at 800Hz with 1000µs end-to-end latency:
  - Size of problem at least 2 orders of magnitude greater than most challenging AO systems in operation
- Laser Guide Star Facility:
  - Generates up to 9 LGS

#### TMT First Light AO LGS Real Time Computing Block Diagram



#### TMT First Light AO LGS Real Time Computing Block Diagram







#### Wavefront Reconstruction

Wavefront reconstruction consists of two steps:

- 3-D turbulence profile estimated with tomographic algorithm
- Projection to various DM with DM fitting algorithm
- Minimum variance algorithms to solve both steps
  - Conventional matrix-vector multiply approach impractical on account of memory requirement and need to update the algorithm in real time
  - Computationally efficient algorithms and innovative hardware implementations needed
- NGS wavefront reconstruction is performed separately using standard modal least-square reconstructor:
  - Split tomography
    - Better control of low-order modes
    - Reduce coupling between LGS and NGS modes



### LGS Tomography (1)

 $C_{S} = G_{X} + n$ 

Minimum variance algorithm:

$$\underbrace{\left( \underbrace{G^{T} C_{N}^{-1} G + C_{X}^{-1}}_{A} \right) x}_{A} = \underbrace{G^{T} C_{N}^{-1} s}_{b} \text{ with } \begin{cases} C = C_{N} + C_{N} \\ C_{X} = \langle xx^{T} \rangle \\ C_{N} = \langle nn^{T} \rangle \end{cases}$$

System to solve has the form A x = b

- A is the block-structured tomography operator (sparse and low-rank)
- x is the tomography vector of unknowns (OPD)
- b is the right hand side tomography vector computed from the pseudo open loop LGS gradients
- Several options have been developed for the tomography step as alternatives to the standard (and impractical) matrix-vector-multiply solution
  - Iterative solutions
  - Grid-based computations
  - Warm restart used to accelerate convergence
  - For all solutions, study impact on AO performance
- Solvers perform matrix-vector multiplications



#### LGS Tomography (2)

- 2 System-oriented solvers:
  - CG30: 30 iterations of Conjugate Gradient (no preconditioning) operating on the whole tomography system
  - FD3: 3 iterations of Fourier Domain Preconditioned Conjugate Gradient operating on the whole tomography system
- 2 Layer-oriented solvers (block generalization of the Gauss-Seidel iteration):
  - BGS-CG20: Block Gauss-Seidel with 20 iterations of Conjugate Gradient for each atmospheric layer
  - BGS-CBS: Block Gauss-Seidel with Cholesky back-substitutions for each atmospheric layer



#### **DM** Fitting

OM fitting matrix system has also the form A x =b

- A is the block-structured fitting operator (sparse)
- x is the DM actuator vector of unknowns
- b is the fitting right hand side vector
- Proposed solver: 4 iterations of Conjugate Gradient (CG4).



#### Computation and Memory Requirements

|                              | Memory<br>(MB) | Number of<br>operations GMAC/s<br>(1000μs latency) |
|------------------------------|----------------|----------------------------------------------------|
| LGS WFS processing           | 10             | 7.2                                                |
| LGS wavefront reconstruction |                |                                                    |
| BGS-CBS                      | 50             | 80                                                 |
| BGS-CG20                     | 2              | 280                                                |
| CG30                         | 2              | 245                                                |
| FD3 (2 layers oversampled)   | 10             | 140                                                |



#### Hardware Implementation

- TMT has supported two competitive studies for the conceptual design of the first light TMT AO system real time controller:
  - DRAO (Dominion Radio Astrophysical Observatory) and tOSC (the Optical Science Company)
  - Both companies have demonstrated the feasibility of developing the TMT real time controller using Xilinx's Virtex-5 FPGA technology.
- Hardware architecture depends upon choice of tomographic algorithm
  - Which impacts processing requirement and memory requirement
- Hardware implementation impacts the latency
  - Appropriate processor for each task (Field Programmable Gate Arrays, Digital Signal Processor, Graphic Processing Unit, others...)
    - Floating point versus fixed point
  - Parallelization efficiency including inter-processor communication and bus contingencies
  - On-chip memory is limited
    - Multiply the number of processors
    - Add external memory

# TMT DRAO Conceptual Design Study



- 1 sFPDP output channel for all of 6 LGS WFS real time control Total number of sEPOP channels; 32 incuts 31 outputs
- Total number of sFPDP channels: 32 inputs 31 outputs

- 9 custom FPGA boards including 6 Xilinx Virtex-5
- 2 custom interface boards with 32 sFPDP full duplex links
- 2 general purpose computer boards
- Mounted in ATCA chassis
- Highly modular architecture
  - Fixed-point operation
  - BGS-CBS algorithm

#### TMT THIRTY METER TELESCOPE tOSC Conceptual Design Study



 7 custom TigerSHARC cluster boards (8 TigerSHARC and 1 Xilinx Virtex-5 FPGA)

- 4 custom FPGA cluster boards (4 Xilinx Virtex-5 FPGA and 1 TigerSHARC)
- One Ring Buffer board
- One general purpose computer board
- Mounted in ATCA chassis
- Meets TMT latency goal requirements
  - Floating-point operation
  - CG algorithm



#### Conclusions and Future Computing Challenges for TMT

- Building the real time controller for the TMT first light AO system is the first computing challenge for TMT AO in terms of:
  - Algorithm complexity,
  - Processing requirements,
  - But is feasible with today's technology.
  - Next steps:
    - Review latest generation of processors
    - Select an algorithm and define architecture
    - Develop prototype and test key components
- Other challenges will follow:
  - Adaptive Optics Secondary: Synchronization of various real time systems
  - MCAO Upgrade: Will implement a higher order wavefront sensors and deformable mirrors requiring at least a factor 4 in processing and memory requirements
  - Multi-Object Adaptive Optics (MOAO) System may also be very challenging:
    - 8 LGS and up to 20 DMs (one per science object)

#### **Questions?**

## TMT web-site: www.tmt.org