

Linac Coherent Light Source (LCLS) at SLAC

Hamid Shoaee

for SLAC Controls Department

Outline

- LCLS-I
 - Facility Overview
 - Commissioning Success
 - Controls System Architecture
- Towards the Future
 - Overwhelming demand for LCLS-II
 - LCLS-II Proposal
 - R&D
 - Further into the future

ICALEPCS 2011 Page 2

Linac Coherent Light Source at SLAC X-ray FEL uses last 1-km of existing 3-km linac

Injector (35°) Damping at 2-km polings

Existing 1/3 Linac (1-km) (with modifications) Main Linac

PEP-II SABER Station B

Indulator (130 pr) LCLS

LCLS Far Hal n A

Guest House

Electron Beam Dump

World's First Hard X-ray FEL

- A billion times brighter than previous sources
- < 2 Å & 50 femtoseconds</p>
 - Study of ultra-fast and ultra-small phenomena
 - Can capture images of atoms and molecules in motion

Photosystems I complex (R. Fromme, ASU)

Single Mimivirus particle (T. Ekeberg, Uppsala U.)

Fully-ionized Ne ¹⁰⁺ (Bozek , Bostedt)

> ICALEPCS 2011 Page 6

LCLS Achieves FEL Saturation at 1.5A

Beam saturates in 60m rather than 90m (25 of 33 undulators)

Gun brightness exceeds LCLS Goals FEL is fully tunable: rep rate, pulse length, photon energy, peak power

LCLS Machine Performance

	Baseline performance	Current performance
Photon energy range	830 to 8300 eV	480 to 10,000 eV
FEL pulse length	230 fs	5 - 500 fs
FEL pulse energy	up to 2 mJ	up to 4 mJ

- Beam availability to users > 95%
- •Controls uptime > 98% (goal = 98.8%)
- •120 fs pump probe synchronization has been achieved

Commissioning Successes & Challenges

- Challenging combination of Legacy & EPICS
- EPICS-based Injector & drive laser 2007
- Legacy & EPICS Linac 2008
- BPMs & Magnets in EPICS 2009-2010
- Linac Upgrade to full EPICS 2010-2011
 - Transition critical functionality from VMS to Linux
 - Data bridge from CAMAC to VME IOCs
- LCLS fully EPICS-based

AIDA – Accelerator Integrated Data Access

- A system for uniform access to controls infrastructure data
- Integrated data from Legacy & EPICS systems
- Complex Data in addition to individual controls points
- Data from remote machines made available to MATLAB & Java apps, in control room, or off site
- Data sources include machine, model, history, configuration, RDB, etc.
- Allows rapid physics applications development regardless of underlying legacy or EPICS controls
- Applications mostly unaffected by controls system upgrades

AIDA - Accelerator Integrated Data Access

http://www.slac.stanford.edu/grp/cd/soft/aida/

LCLS 4-Layer Network Architecture

ICALEPCS 2011 Page 13

LCLS Timing Event System

LCLS 120 Hz Feedback System

LCLS 120 Hz Feedback System

Runtime Feedback Display

ICALEPCS 2011 Page 19

LCLS Machine Protection Architecture

LCLS Machine Protection Architecture

Personnel Protection System (PPS)

• Two redundant safety PLC (PILZ) independently programmed and validated

• Supervisor: Allen-Bradley

• EPICS interface IEC61508, ISO9001

Centralized RDB for Configuration Control

- LCLS Infrastructure includes a multi-function database of LCLS devices and related data
 - It is derived from the machine design model
 - includes beamline components, device information, polynomials, cabling data
 - laser device parameters
 - Field installed modules inventory
 - Links to QA documents and drawings
 - web interface for IRMIS and AIDA

RDB Applications

- Feedback Configuration parameters
- Save/Restore application
- Java and MATLAB physics applications parameters
- MPS faults history
- E-Log App
- CATER for Software Requests

High Level Application Software

Two-tiered approach

- Java-based utility applications
 - XAL machine modeling and tuning
- MATLAB / EPICS/AIDA infrastructure
 - Enabling physicists and operations staff to rapidly prototype required applications
 - Soft IOC framework for physicists
 - User-configurable PV records for physics data

Controls Model Based Apps- Model Manager

MATLAB High Level Physics Apps ...

PRODUCTION

08/19/2010 10:27:53

LCLS-I Automation Software

LCLS-I Automation Software

- Only 28% of users have received beam time
- Key Desired Capabilities Driving LCLS-II
 - More capacity & capability
 - One to four stations operating simultaneously
 - two injectors offering independent pulses
 - Extension to full intensity hard x-rays
 - study of thick 3D materials with increased x-ray penetration and spatial resolution
 J. Stohr
 - Extended soft x-ray spectral range

LCLS-II Machine Layout

- Use same injector design at sector-10 (1 km upstream)
- Two new bunch compressors and 4-14 GeV linac (~1 km)
- 1200-m long bypass goes around LCLS-I
- Two new undulators (HXR & SXR) in new tunnel
- Baseline is 60 Hz in each undulator (multi-bunch later)

Slide 31

LCLS-II Machine Layout

- 1200-m long bypass goes around LCLS-I
- Two new undulators (HXR & SXR) in new tunnel
- Baseline is 60 Hz in each undulator (multi-bunch later)

LCLS-II is part of a long term strategy

- 2 injectors, 2 linac sections (14 GeV each)
- 1 hard x-ray undulator 5-10keV in tunnel 1
- 1 hard x-ray SASE undulator in tunnel 2; (variable gap)
- 1 soft x-ray SASE undulator in tunnel 2; (variable gap)
- 6 experimental stations, up to 4 operating simultaneously
- Room for 4 more experimental stations

Advancing Controls to Meet Future Needs

- Migrating from CAMAC to new platforms
 - m-TCA platform research currently underway
 - Low Level RF field test of new system in 6 months
 - BPM m-TCA field tests April 2012
- Large-scale data archiving management
 - Scale to 1-2 millions PV's
 - Fast data retrieval
 - Days worth of 1Hz data for a PV in less than 500ms
- More automation of routine control room tasks

Conclusion

- LCLS has been an unqualified success exceeding performance goals
- Major challenge has been managing hybrid legacy-EPICS controls system
- LCLS-II and beyond will provide rich opportunities for advancing the state of controls and instrumentation
- Collaboration with Physics and Operations groups has been essential for success.

