

Status of ASKAP Monitoring and Control System

Juan Carlos Guzman (on behalf of the ASKAP Computing Team) ASKAP Control Software Group Lead

ICALEPCS 2011, 10 – 14 October 2011, Grenoble, France

What is ASKAP? Australian SKA Pathfinder ~ 1% SKA

Wide field of view radio telescope

- 36 antennas interferometer
- 12m diameter (3-axis)
- Max baseline 6 km
- 30" angular resolution
- Frequency 0.7 1.8 GHz
- 300 MHz bandwidth, 16k freq channels
- Phase Array Feeds (PAF) technologies yielding 30 sq degrees field of view
- Primarily a survey instrument
- Technical precursor of SKA
 - Demonstration of WA as SKA site
 - Phased Array Feeds technologies
 - Computing

Where is ASKAP located?

Status of ASKAP M&C System - ICALEPCS 2011, 10 - 14 Oct 2011, Grenoble, France

Where is ASKAP located? Murchison Radio Observatory (MRO)

Murchison Radio Observatory (MRO) Facts

- Located in Boolardy Station
 - 3,500 sq km, population <10

Murchison Radio Observatory (MRO) Facts

- Located in Boolardy Station
 - 3,500 sq km, population <10
- 315 km north east Geraldton
- Murchison Shire
 - "Shire with no town"
 - 50,000 sq km, population <160
 - 29 stations

Murchison Radio Observatory (MRO) Facts

- Located in Boolardy Station
 - 3,500 sq km, population <10
- 315 km north east Geraldton
- Murchison Shire
 - "Shire with no town"
 - 50,000 sq km, population <160
 - 29 stations
- Traditional lands of the Wajarri Yamatji

Radio Quiet Zone

• January 2010

- First Antenna Installed (Antenna 29)
- May 2011
 - All Subsystems CDR completed

• January 2010

- First Antenna Installed (Antenna 29)
- May 2011
 - All Subsystems CDR completed
- June 2011
 - First VLBI fringes detected using Antenna 29 and other radio telescopes in Australia
 - Full PAF installed at Parkes

- Sep 2011
 - PAF interferometry Tests in Parkes

- Sep 2011
 - PAF interferometry Tests in Parkes
- Oct 2011
 - Installation of first PAF in Antenna 3
 - First Testing of Control Software at MRO (Antenna 1 and 3)

Status of ASKAP M&C System - ICALEPCS 2011, 10 - 14 Oct 2011, Grenoble, France

ASKAP Project Status Next Milestones

• Feb 2012

- MRO Infrastructure Completed
- Installation of Boolardy Engineering Test Array (BETA) completed
 - 6 PAF, front-end and back-end electronics, Monitoring and Control Software
- Start BETA commissioning

• May 2012

- Installation(assembly) of 36 antennas completed
- Site Acceptance Test of antennas continue

• Dec 2013

- ASKAP (36 antennas with PAF) construction complete
- ASKAP continues commissioning + early science operations

ASKAP Data Flow

Virtual Thirty six Filterbanks MRO Beamformers antennas Pawsey Observatory Centre 1.9Tb/s Beamformed PAF filterbank ASKAP filterbank samples samples Science Data 18Tflop/s 27Tflop/s Archive Central Correlator Facility 1.9Tb/s processor 0.6Tb/s 2.5GB/s ASKAP Science 0.6Tb/s products via 100 Tflop/s VO protocols 18Tflop/s 27Tflop/s MRO-Perth link 340Tflop/s 10GB/s 0.6Tb/s 1.9Tb/s Operations 18Tflop/s 27Tflop/s data archive

ASKAP FPGA-based signal processing chain

T. Cornwell, Feb 22 2010

ASKAP Software Architecture Past (ICALEPCS09)

ASKAP Software Architecture Present

Key Technologies EPICS

- Adopted in 2009
 - 6 months on Parkes Testbed System
 - BETA (6 Antennas): 30 Soft-IOCs, 300,000 Records, 40,000 Records to be archived
 - ASKAP (36 Antennas): 180 Soft-IOCs, 1M Records, 240,000 Records to be archived
- Solid communication protocol (Channel Access)
- Flexible, modular, multiple platform, lots of drivers available and tools
- Big, friendly and growing community
- EPICS Tools
 - "Off-the-shelf" drivers: SNMP, Modbus-TCP, TCP/ASCII(StreamDevice)
 - ASYN a C/C++ EPICS Driver framework
 - SNL a language to implement state models and sequences in IOC
 - PyEpics3, Python CA Client Library
 - EDM for Rapid GUI development

• Best OPI Yet (BOY)

• Best OPI Yet (BOY)

Best OPI Yet (BOY)

• Best OPI Yet (BOY)

State:	ONLINE	Lock: UNL	OCKED, host ptbdr1.	atnf.CSIRO.AU, user	has09e, script i	mts?a?bmf?ge	t?acm		Help	
Enab	le	UTC	State	DSP Ready	Power	Temp	Clock	ACM	Corr	
				1234	W	°C	PCRAB	Count	Count	
\checkmark	c1	01:44:49.003	Online		135.2	51.2		16245	48734	
◄	c2	01:44:49.002	Online		135.5	48.7		16245	48734	
◄	c3	01:44:49.003	Online		137.9	49.2		16245	48734	
◄	c4	01:44:49.002	Online		129.7	51.0		16245	48734	
◄	c5	01:44:49.002	Online		135.8	51.0		16245	48734	
◄	c6	01:44:49.002	Online		135.7	51.0		16245	48734	
◄	с7	01:44:49.002	Online		133.8	51.0		16245	48734	
◄	c8	01:44:49.002	Online		136.4	51.0		16245	48734	
◄	c9	01:44:49.002	Online		138.1	51.0		16245	48734	
◄	c10	01:44:49.002	Online		138.4	51.7		16245	48734	
◄	c11	01:44:49.002	Online		139.7	52.7		16245	48734	
	c12	01:44:49.002	Online		136.0	52.2		16245	48734	
◄	c13	01:44:49.002	Online		138.1	52.7		16245	48734	
◄	c14	01:44:49.003	Online		138.5	52.7		16245	48734	
◄	c15	01:44:49.002	Online		138.8	54.1		16245	48734	
◄	c16	01:44:49.002	Online		135.4	50.7		16245	48734	
Mon	itor Ra	te 🔿1 second	O5 seco	ond C	10 second	۲	30 second	O5 sec	ond (IOC Scan)	
	Ston	Ov	errides	IOC Substat	e					
	Stop	DSP Bitfile Name		Comms Err	or special	queueReg	uest timeout			
		beamformerv6.bit 🛟		commis error special queuekequest inneout						
	Start	Force DSP Firmware Load								
Erase DSP on Shutdown										
	Run	Configu	ration Info							
-		Conligu	ation into							

Key Technologies

Adopted in 2009

• Very good core functionality

- Interface Definition Language (SLICE)
- RPC communication paradigm
- Locator service
- Easy client/server code development
- Publish/Subscribe Issues (version 3.4.1)
 - Inability for subscriber to identify IceStorm server has died (no autoconnect)
 - No message queues or cache
- Looking into ways to improve

Software Development Process

- Iterative light-weight approach
- Integrate early, integrate often
 - Monthly software releases

• Milestone = Delivery of Software

- Not using Gantt Charts
- Highly adaptable to change of requirements

• "Document as you code"

- ...but focus on code not heavy (useless) documentation
- Automated tools to generate API documentation

• "Test as you code"

• Unit and functional testing as part of each module or component

Software Development Process Essential Tools

- Version Control System: Subversion
- Feature-rich build system
 - Recursive builds
 - Integrates many Third-party packages
 - One command: Update → Compile → Docs → Test → Release
 - Wraps constructions tools: scons, make, autoconf, setuptools and ant
 - Written in Python
- Redmine http://www.redmine.org
 - Project Management Tool
 - Issue (bug) Tracking with Milestone grouping
 - Sub-projects
 - Wiki
- Hudson http://hudson-ci.org
 - Continuous Integration Tool
 - Nightly builds, unit and functional testing

Software Development Process Essential Tools

• Hudson dashboard shows status of all build executors and jobs

Hudson

Hudson

G search 🕖 log in

ENABLE AUTO REFRESH

ASKAP Software Build and Test Server

Build Queue	All Analys	sis Ceri	tral Processor Data Services Full_Builds	Synthesis Telescope Operating Syster	n	
No builds in the queue.	s	w	Job (Last Success	Last Failure	Last Duration
Build Executor Status	•	☀	Acabaia	18 hr (#163)	N/A.	47 min
Master I ldle	•	3	askap otfobs	8 days 10 hr (#205)	11 hr (#213)	42 min
2 Idle 3 Idle	•	*	askapsoft build lenny 64 bit	6 hr 37 min (#143)	19 days (#118)	1 hr 19 min
automac 1 Idle	•	*	askapsoft build linux	14 hr (#554)	22 days (#531)	3 hr 32 min
2 Idle giltes	0	*	askapsoft build linux32	1 mo 9 days (#25)	1 mo 16 days (#28)	3 hr 10 min
1 Building askapsoft, build_lenny_64_bit #144	0	3	askapsoft build oss	1 mo 3 days (#465)	25 days (<u>#473</u>)	4 hr 33 min
2 Idle king	•	*	Central Processor	17 hr (#235)	1 mo 16 days (<u>#189</u>)	58 min
1 Idle 2 Idle	•	×	coimager_elais	3 days 18 hr (<u>#58</u>)	17 days (<u>#56</u>)	2 days 2 hr
minice 1 Idle	•	*	java-askag	12 hr (#145)	2 mo 3 days (#84)	53 min
2 Idle	•	*	ManiCA-ASKAP	17 hr (#98)	2 mo 3 days (#35)	33 min
	•	¥	open-monica	2 days 19 hr (<u>#20)</u>	N/A	42 sec
	•	¥	gtf trunk, release	16 hr (#163)	13 days (<u>#149</u>)	38 min
	•	*	Santhesis	16 hr (#218)	3 mo 22 days (#105)	5 hr 24 min
	•	*	Synthesis mpi	15 tr (#33)	17 days (#24)	1 hr 16 min
	•	*	system integration 1	11 hr (#161)	2 mo 3 days (<u>#94</u>)	1 hr 21 min
	•	*	system integration_2	14 hr (#51)	27 days (#15)	1 hr 32 min

Challenges

Dealing with different "work culture"

 Firmware (FPGA/VHDL) developers do not follow same process as software developers

Hardware → Firmware → Verification Software → ICD

- Late delivery of ICD
- Late delivery of Software
- Operation of "half-baked" system
- Where is the hardware (with firmware) to test?
 - Software is at the end of the chain
 - Not enough time to perform full system testing and verification

• Pressure on getting results

• Squeeze software development and system verification

Challenges Measures to "ease the pain"

- Work closely with Hardware/Firmware developers
 - Iterative approach
- Built emulators
 - But we still need a draft ICD at least
- Iterative Development essential for adaptability
 - Monthly releases are easier to (re)scope
 - Move features depending on urgent needs

The Future

- Getting results with BETA (6 Antenna with PAF)
 - Integrate Correlator Hardware/Firmware
 - Installation/verification of the TOS @ MRO
- Support Parkes Test-Bed System
- Control System Studio
 - Integrate it into our build system
 - BEAST as a replacement of ALH
 - BOY as a replacement of EDM
- Facility Configuration Management
- Observation Management Portal
 - Evaluate different web technologies

Australia Telescope National Facility CSIRO Astronomy and Space Science

Juan Carlos Guzman Research Team Leader

Phone: 02 9372 4457 Email: Juan.Guzman@csiro.au Web: http://www.atnf.csiro.au/projects/askap/

Thank you

Contact Us Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au Status of ASKAP M&C System - ICALEPCS 2011, 10 - 14 Oct 2011, Grenoble, France

