llowards' [High Perfermance
Precessing in Viedern
Java-based Control Systems

Marek Misiowiec
Wojciech Buczak, Mark Buttner
CERN
|Calepcs 2011

Performance with soft real time

Distributed system - Monitening & Alarms at CERN

collect data from over 10’000 devices
heterogenous environment

Performance in middle-tier

process with soft real-time constraints
lose no data during calculations
deliver results within time frame
build on standard JDK

E E tens of consoles

1-1|’
F

monitoring ~ alarms

SRV \/
rule engine 100°G00
A T calc/s

30°000 data/s
10MB/s net

L b]

| 4lF] 'E | 4E

10’000 monitored devices

DB

Technical focus

common VIiew. on o decomposition for
data and devices concurrency
immutability favors o multithreaded
parallelism communication
data :
) : parallelism
uniformity

memory management

o oOptimal structures and algorithms

o garbage collectors, 32 vs 64 bit,
Java Virtual Viachine settings

Memory Management

Garbage Collection(EE) stack
o INntroduces non-deterministic behaviour ‘L ________ i
cC —> D

o slows the application with potentially to be collected

long Sstop-the-world pauses

2 GC
—>
— —
. . pe— largest problem for
5 pauses S app threads performance
— —

o Mmakes it hard to achieve real-time

Soft real-time with GC

Real-time Is not about speed

deadline deadline
critical task | |
| >

period 1 period 2

hard real-time:

Iiransiates inte reguirements for GC o e e
o WE expect a degree of determinism
o number of stop-the-world pauses limited for a period

Solution

o steady progress in Garbage Collection techniques

o tuning JVM with over 50 properties

memory. Sizes,
number of GC threads,...
JVM GC history.

90’s Serial Collector

Parallel-Compacting,

U Concurrent Mark-Sweep

now GarbageFirst

Garbage Collection concepts

Heap

GC concepts

can work with different collectors

Young generation Old generation

o Young much smaller than Old
o ODbjects tend to live shoritly
e NEW objects In Eden

GC concepts

minor collection: stop-the-world
|

Young generation

\ T

Young much smaller. than Old

Old generation

objects tend to live shoritly

new objects in Eden
moderate in Survivors

GC concepts

minor collection: stop-the-world
|

Young generation

Young much smaller. than Old

Old generation

objects tend to live shoritly

new objects in Eden
moderate in Survivors
oldiin @ld

GC concepts

major collection: stop-the-world

Old generation

1st marking live objects

219 sweeping memory.

GC concepts

major collection: stop-the-world

Old generation

1st marking live objects
204 sweeping memory.
defragmentation: compacting

GC concepts

Young generation

o parallel — multiple GC threads

Old generation

1st marking live objects
204 sweeping memory.
defragmentation: compacting

o concurrent— GC along withrapplication

Concurrent Mark-Sweep (CNS)

parallel collection parallel + concurrent marking & sweeping

Young generation Old generation

|

|

|

|

|

1 initial conc. CONc.

: mark mark remark sweep

' GC threads [P || P | -

: N BE=
: app threads > >

: - |—|—

o generational, incremental, parallel

o partially concurrent: marking & sweeping in stages
e NO cOompacting

GarbageFirst (G1)

\Vieets soitrealittime goealwithrhigh prebability.

o default in JDKY, succeeds Concurrent Mark-Sweep

o targeted for multi-processors with large memories

heavy use of multithreading
heap with many equal regions, no generations

compaction

o algorithmically complex

enabling in Java 6:
-XX:+UnlockExperimentalVMOptions
-XX:+UseG1GC

1)

Outcome

Performance analysis with' Java Standard Edition 6
o fine-tuned CMS most effective, G1 close second

Obsernvations
o 64 bit architecture
4GB limit per JVM crossed
too much memory used - performance. penalty.

o repetitive nature of processing diminishes
effects of dynamic class loading

o long startup time s negligible
o short lived objects, locality.

16

Conclusions

High Performance Computing with soft real time
requirements can be achieved with modern JVIMs

JVIM tuning Is indispensable
select most fitting garbage collector

set JVM options
approach 64 bit boost with restraint

constant improvement in. memory. management
G1 (Java 7) more efficient than CMS (Java 6)

17

