
Towards High Performance
Processing in Modern

Java-based Control Systems

Marek Misiowiec
Wojciech Buczak, Mark Buttner

CERN
ICalepcs 2011

Performance with soft real time
Distributed system - Monitoring & Alarms at CERN
l  collect data from over 10’000 devices
l  heterogenous environment

Performance in middle-tier

l  process with soft real-time constraints

•  lose no data during calculations
•  deliver results within time frame

l  build on standard JDK

2!
10ʼ000 monitored devices!

SRV!

rule engine

alarms

high-level middleware!

tens of consoles!

monitoring

DAQ!

DB!

30ʼ000 data/s!
10MB/s net!

100ʼ000 !
calc/s!

Technical focus

3!

l  common view on

data and devices

l  immutability favors
parallelism

l  decomposition for

concurrency

l  multithreaded
communication

l  optimal structures and algorithms
l  garbage collectors, 32 vs 64 bit,

Java Virtual Machine settings

parallelism data
uniformity

memory management

Memory Management

Garbage Collection (GC)

l  introduces non-deterministic behaviour

l  slows the application with potentially

long stop-the-world pauses

l  makes it hard to achieve real-time

4!

A! B!

C! D!

stack!

to be collected!

app!
pauses!

Soft real-time with GC

Real-time is not about speed

Translates into requirements for GC
l  we expect a degree of determinism
l  number of stop-the-world pauses limited for a period

5!

" "critical task"

period 2!

critical task"

deadline!

period 1!

deadline!

hard real-time: fatal

soft real-time: undesireable

GC"

Solution

l  steady progress in Garbage Collection techniques

l  tuning JVM with over 50 properties
•  memory sizes,

number of GC threads,…

6!

90’s Serial Collector

00’s Parallel-Compacting,
Concurrent Mark-Sweep

now GarbageFirst

JVM GC history

Garbage Collection concepts

Heap

l  Young much smaller than Old
l  objects tend to live shortly
l  new objects in Eden

Young generation Old generation

Eden! Survivors!

GC concepts

can work with different collectors!

l  Young much smaller than Old
l  objects tend to live shortly
l  new objects in Eden

moderate in Survivors

Young generation Old generation

minor collection: stop-the-world!

GC concepts

l  Young much smaller than Old
l  objects tend to live shortly
l  new objects in Eden

moderate in Survivors
old in Old

Young generation Old generation

minor collection: stop-the-world!

GC concepts

1st marking live objects
2nd sweeping memory

Old generation

GC concepts

major collection: stop-the-world!

1st marking live objects
2nd sweeping memory
defragmentation: compacting

Old generation

major collection: stop-the-world!

GC concepts

1st marking live objects
2nd sweeping memory
defragmentation: compacting

Old generation

GC concepts

Key improvements to collections:
l  parallel – multiple GC threads
l  concurrent – GC along with application

Young generation

Concurrent Mark-Sweep (CMS)

l  generational, incremental, parallel
l  partially concurrent: marking & sweeping in stages
l  no compacting

Well tuned, most effective in our tests

Young generation Old generation

parallel collection! parallel + concurrent marking & sweeping !

GC threads!

app threads!

GarbageFirst (G1)

Meets soft real time goal with high probability

l  default in JDK7, succeeds Concurrent Mark-Sweep

l  targeted for multi-processors with large memories
•  heavy use of multithreading
•  heap with many equal regions, no generations

•  compaction

l  algorithmically complex

15!

enabling in Java 6:"
-XX:+UnlockExperimentalVMOptions  
-XX:+UseG1GC"

Outcome

Performance analysis with Java Standard Edition 6
l  fine-tuned CMS most effective, G1 close second

Observations
l  64 bit architecture

•  4GB limit per JVM crossed

•  too much memory used - performance penalty
l  repetitive nature of processing diminishes

effects of dynamic class loading
l  long startup time is negligible
l  short lived objects, locality

16!

Conclusions

l  High Performance Computing with soft real time

requirements can be achieved with modern JVMs

l  JVM tuning is indispensable
•  select most fitting garbage collector

•  set JVM options
•  approach 64 bit boost with restraint

l  constant improvement in memory management
•  G1 (Java 7) more efficient than CMS (Java 6)

17!

