Comparative Evaluation of IEEE-1588 Precision Time Protocol for the Synchronized Operation of Tokamak Device

October 12, 2011, <u>Mikyung Park</u>^a, Sangwon Yun^a, Woongryol Lee^a and Anders Wallander^b

a: KSTAR Research Center

^b: ITER Organization

icalepcs 2011

Background

- This work was initiated for the validation of Time Communication Network using IEEE1588-2008 of ITER. So, some documents of ITER were referenced and the drivers for IEEE1588 boards were used for the test.
- However, it is <u>at an early stage</u> and much progress has not achieved, yet.

Outlines –

- Introduction of IEEE1588 Precision Time Protocol
- Application in fusion devices
- Comparison with other protocols
- Conclusions

IEEE1588 Standard

- IEEE1588 : Precision Time Protocol (PTP)
- It is a standard for a Precision Clock Synchronization Protocol for networked measurements and control systems using Ethernet communication network
- Two versions released :
 - version 1 : IEEE1588-2002
 - version 1 : IEEE1588-2008
- It is possible to synchronize distributed clocks with an accuracy of less than 1 μsec
- It uses UDP packet communication based on TCP/IP protocol stack
- It works inside LAN (PTP Domain)

IEEE1588 Standard - Features

- Master-Slave Hierarchy
- Best Master Clock Selection Algorithm
- Fault tolerance

3

- Hardware time-stamping
- Low cost to implement
- Limitation in v.1 vs. Improvement in v.2 :
 - Slow Sync message rate : 2sec
 - ⇒ Higher Sync message rate : less than 100ms
 - -Traffic congestion : non-optimized message size

⇒ 'Shorter Sync Message'

- Non-linear effect on jitter : cascaded boundary clock
 introducing 'Transparency Clock'
- No correction for asymmetry error : network asymmetry
 ⇒ Introducing 'Correction Mechanism'

Basic Synchronization – Message-based Two Way Transfer

Version 1

- Step 1 : Propagation delay measurement T_{LD}=((T_{S2}-T_{M1})-(T_{M4}-T_{S3}))/2, if T_{LD}= T_{MS} = T_{SM.} symmetric link)
- Step 2 : Offset measurement

Version 2

WEPMS012 Comparative evaluation of IEEE1588 Precision Time Protocol for the synchronized operation of Tokamak device

Best Master Clock Selection Algorithm

- <u>State Decision Algorithm</u>: to produce a recommended state by comparing all relevant data sets
- Data Set Comparison Algorithm : to select clock from better

Transparent Clock

- Correction Field in TC
 - Original Timestamp : 48bits in sec + 32bits in ns
 - Correction Field : 48bits in ns + 16bits in scaled fractional ns
 - . Sub-ns accuracy
 - . Transparent correction + asymmetry correction

NFRI국가핵융합연구소 National Fusion Research Institute

5

WEPMS012 Comparative evaluation of IEEE1588 Precision Time Protocol for the synchronized operation of Tokamak device

Use case in ITER

6

- ITER is the biggest project in the world to construct a superconducting experimental reactor in cooperation with 7 states
- ITER control system, CODAC, aims at standardization by using the latest, but performance-proven technologies
- They decided IEEE 1588-2008 as a standard for TCN to synchronize time
- Also, they performed evaluation test using several COTS products
- And, they got results as follows :
 - Confirm basic functions
 - Time jitter less than 50ns,rms
- Acronyms :
 - ITER : International Thermonuclear Experimental Reactor
 - CODAC : Control, Data Access, and Communication
 - TCN : Time Communication Network

• Use case in ITER

7

Use case in ITER _ Test Results

8

Figure 3. Oscilloscope output of the IEEE 1588-2008 compatibility testing where Channel 1 (yellow) represents the 1PPS signal output from the Grandmaster, Channel 2 (magenta) represents the 1PPS output of the 1^{st} PPT slave, and Channel 4 (green) represents the 2^{nd} PTP slave.

	' meas	ure	nen							-	A U	me								
avera	age									-	5.6	ps								
maxi	mum									1	.49	ns								
minimum								-	-136ns											
peak	-to-pea	ak n	ıaxi	mu	m					2	285	ns								
RMS											38.5	53 1	ns							
제 Symmet File Edit S Zoom Full	tricom Time ietup View I Foffset I Fdrift	Monitor Update Detilt	Analy Help Rms Stats	zer Integr	Histo	ogram Dir Load	(file	e-Ful ack	l_test Scal	_1-20	11_01	_27	06_1	11_3	2.xli	i)				
Fle Edit S Fle Edit S Zoom Full Symmetric Phase De XLi Phase	ricom Time ietup View Folfset Folfset Grift om TimeMon viation Histo ; Samples: 4	Monitor Update Detilt Retilt gram; F 1509; S	Analy Help <u>Rms</u> <u>Stats</u> lyzer s=1.000 ample I	zer Integr Updat (file=F) Hz; Fo nterval:	Histo al cull_to =1.0 : 1; 1	Dir Load est_1-: 00 Hz, nput Ir	(file Bi 2011 ; 2011 mpeda	e-Ful ext 01_2 1/01/2 ance:	Scal Clea 7-06_1 27 14: 50 Oh	1 - 20	11_01 di) Start mms: 1	_27 Time (CP7	06_1 : 01/2 P; Si	11_3 27/20 talus:	12.xli 011 1 : LOC	4:11: ЖЕD	40 L GPS	ITC 5 PRI	; Os	;illator
24 Symmet Fle Edit S Symmetric Phase De XLi Phase 259	tricom Tine etub view Foffset Foffset Foffst Samples 4	Monitor Update Detit itor Ana gram; F 509; S	Analy Hep Fins: Stats Vzer =1.000 ample 1	Zer Updat (file=F Hz; Fc nterval:	Histo	Dir Load St. 1- 00 Hz, nput h	(file	e-Ful ext 01_2 01_2 1/01/ ance:	L test	_1 20	ti) Start	Time CP/I	: 01/2 P; Si	11_3 27/200 talus:	2.xli	i) 4:11: KED	40 L GPS		I; Osu	cillator

Histogram of Phase Deviation

Evaluation Test in KSTAR

- To verify the basic functions of IEEE 1588 (PTPv2) :
 - Time synchronization
 - Time Accuracy and Jitter
- Setup : a Grandmaster + 3 Slaves

9

Evaluation Test in KSTAR Confirm time synchronization using PTPv2

NFRI 국가핵융합연구소 National Fusion Research Institute

10

WEPMS012 Comparative evaluation of IEEE1588 Precision Time Protocol for the synchronized operation of Tokamak device

Evaluation Test in KSTAR

- Measure 1PPS of a Grandmaster and 3 Slave boards
- Measure time differences between slave cards
- (5 Pulses, Period 1us, Width 100ns (repeat 5 times)

KSTAR

11

12 **Comparison with Other Timing Systems**

Customized Protocol – e.g. KSTAR Timing Protocol

- **Providing 'Synchronized Time' and 'Synchronized Events'** ۲
- Using home-made timing protocol ۲
- Master time reference to GPS time
- **<u>Dedicated</u>** optical timing network using <u>Star-topology</u>

WEPMS012 Comparative evaluation of IEEE1588 Precision Time Protocol for the synchronized operation of Tokamak device

¹³Comparison with Other Timing Systems

Customized Protocol – e.g. KSTAR Timing Protocol

Specification	V.2
Timing accuracy	max. 5ns (1 tick)
Timing Jitter	<100ps,max
Output clock	1Hz ~ 100MHz
Trigger/Clock output	8, configurable
Multi triggering sections	8, configurable
Optical communication speed	2 Gbps
FPGA	Spartan-6 (150K logic cells)
IRIG-B GPS time decoding	0
PMC Form-factor, PCI/PCI-x	32/64-bit, 33/66MHz
EPICS device driver in	Vxworks, Linux 2.4x/2.6x

NFR 국가핵융합연구소 National Fusion Research Institute

Comparison with Other Timing Systems

WHITERABBIT

- To provide precise timing and events distribution for high-end real-time system
 - Sun-nanosecond timing accuracy
 - (using compensation of signal propagation delay)
 - Packet loss : 10⁻¹²
 - (forward error correction and introduction of QoS)
- WR timing network : a deterministic field bus based on synchronous giga-bit Ethernet and Precision Time Protocol
- It operates with completely open license on hardware and software
- It is a growing future protocol and currently working prototype is released

Conclusions

Pros and Cons

Generally Spoken Advantages

- Easier and Cheaper implementation
- Suitable for widely distributed facilities
- Non-time critical applications
- Commonly proven technology
- Guaranteed long time

Weaknesses for Tokamak Operation

- Lack of event synchronization
 - Need extra cost to provide synchronized events
 - Synchronized sampling clock signals are also necessary for data acquisition
- Somewhat, insufficient timing accuracy
 - to support high-speed DAQ systems

References

- http://www.nist.gov/el/isd/ieee/ieee1588.cfm
- http://www.ieee1588.com/index.html
- <u>http://fastironex.blogspot.com/2010/02/1588-ecn-asia.html</u>
- M.Kreider, et.al, "Whiterabbit A novel, high precision timing system", Proceeding of PCaPAC2010
- ITER document(ITER_D_4APQYY), "ITER CODAC TCN Infrastructure test Report"
- Mikyung Park and Woongrypl Lee, "The upgrade of KSTAR timing system to support long-pulse operation and high-speed data acquisition", 2011 IAEA TM

