
DEBROS: A UNIX-like OS for 8-bit microcontrollersDEBROS: A UNIX-like OS for 8-bit microcontrollers

Mark A. Davis
Control Systems Software GroupControl Systems Software Group

National Superconducting Cyclotron Laboratory

Introduction Preemptive multitasking simplifies

Can low-end 8-bit microcontrollers based on decades- Use of a preemptive multitasking kernel eliminates the

Introduction Preemptive multitasking simplifies

Can low-end 8-bit microcontrollers based on decades-

old technology help run an advanced experimental science

facility? Yes! With the right tools, these low-end processors

Use of a preemptive multitasking kernel eliminates the

need for each task to manage its CPU usage and save and

restore its own state between task switches.facility? Yes! With the right tools, these low-end processors

can support the basic functionality programmers expect from

any UNIX-like operating system, making them a practical

restore its own state between task switches.

int preemptiveTask1(int argc, char **argv)int preemptiveTask1(int argc, char **argv)int preemptiveTask1(int argc, char **argv)int preemptiveTask1(int argc, char **argv)any UNIX-like operating system, making them a practical

choice for many uses.

int preemptiveTask1(int argc, char **argv)int preemptiveTask1(int argc, char **argv)int preemptiveTask1(int argc, char **argv)int preemptiveTask1(int argc, char **argv)
{{{{

printf(“Do initialization”);printf(“Do initialization”);printf(“Do initialization”);printf(“Do initialization”);
for (;;) {for (;;) {for (;;) {for (;;) {

printf(“Do part 1”);printf(“Do part 1”);printf(“Do part 1”);printf(“Do part 1”);printf(“Do part 1”);printf(“Do part 1”);printf(“Do part 1”);printf(“Do part 1”);
while (! part2Done) while (! part2Done) while (! part2Done) while (! part2Done)

printf(“Do a little more of part 2”);printf(“Do a little more of part 2”);printf(“Do a little more of part 2”);printf(“Do a little more of part 2”);
}}}}Motivation

The lack of a standard software platform for such 8 bit

microcontrollers is an impediment to their use in projects

}}}}
return 0;return 0;return 0;return 0;

}}}}

Figure 2. Things are so much simpler

Motivation

microcontrollers is an impediment to their use in projects

they are otherwise well suited for. Proprietary tools and

programming interfaces require longer learning curves and

Figure 2. Things are so much simpler

when using preemptive multitasking.

programming interfaces require longer learning curves and

result in non-portable software and increased costs. At the

National Superconducting Cyclotron Laboratory, these and High-end features on low-end hardware National Superconducting Cyclotron Laboratory, these and

other limitations brought development to a standstill and

forced a search for alternatives. With no ready-made

.

First installed in 2006, DEBROS now runs on over 150

High-end features on low-end hardware

forced a search for alternatives. With no ready-made

solution available, I decided to develop one myself.

First installed in 2006, DEBROS now runs on over 150

controllers at the NSCL, and its use continues to expand.

• Rabbit 3000 running at 44 MHz

• 768K RAM (200-265K unused)

• 512K Flash (used for basic filesystem)

• 100BASE-T EthernetCooperative multitasking doesn’t scale

Originally, our controllers used the cooperative

Figure 3. Typical hardware specs

• 100BASE-T EthernetCooperative multitasking doesn’t scale

Originally, our controllers used the cooperative

multitasking mode, which works well when tasks are few and

short. But inevitably, the number and capabilities of the

• Preemptive, priority-based, soft real-time multitasking kernel

• Hardware memory protection

• UNIX-compatible API (fcntl, stdio, sockets, pipes, semaphores, signals, etc)short. But inevitably, the number and capabilities of the

tasks grew. To maintain acceptable response times, I was

forced to break each task into smaller and smaller pieces,

• UNIX-compatible API (fcntl, stdio, sockets, pipes, semaphores, signals, etc)

• Multiple TCP and UDP network connections (including login shells)

• UNIX-like shell commands

• Simple Remote File Systemforced to break each task into smaller and smaller pieces,

each responsible for managing its own CPU usage and

saving/restoring the task state between calls. Tasks became

• Simple Remote File System

• Concurrently writable system log, continuously backed up to remote file server

• EPICS code for auto discovery, configuration, and custom Records

• Extensive diagnostics includes remote monitoring and updating of boot imagessaving/restoring the task state between calls. Tasks became

larger, more complex, less efficient, and required more work

to maintain.

• Extensive diagnostics includes remote monitoring and updating of boot images

• View plot of system variables in real-time

• Base functionality available to all applications includes:

o Read/Write from/to digital and analog I/O signalsto maintain.

.

o Read/Write from/to digital and analog I/O signals

o Bench and field-level calibrations for analog inputs and outputs

o Hardware-specific initialization during startup

o ”Persistent” variables (saved to flash/BBRAM, restored on startup)

int cooperativeTask1(unsigned long maxMS)int cooperativeTask1(unsigned long maxMS)int cooperativeTask1(unsigned long maxMS)int cooperativeTask1(unsigned long maxMS)
{{{{

static int state = 0;static int state = 0;static int state = 0;static int state = 0;
unsigned long startTime;unsigned long startTime;unsigned long startTime;unsigned long startTime;

.

Figure 4. DEBROS software features

unsigned long startTime;unsigned long startTime;unsigned long startTime;unsigned long startTime;

switch (state) {switch (state) {switch (state) {switch (state) {

Is DEBROS right for your project?

If your project requires sub-millisecond response times

case 0:case 0:case 0:case 0:
printf(“Do initialization”);printf(“Do initialization”);printf(“Do initialization”);printf(“Do initialization”);
state = 1; break;state = 1; break;state = 1; break;state = 1; break;

Is DEBROS right for your project?

If your project requires sub-millisecond response times

and use of every last CPU cycle, then DEBROS may not be

a good fit. But if you want a ready-to-use programming and

case 1:case 1:case 1:case 1:
printf(“Do part 1”);printf(“Do part 1”);printf(“Do part 1”);printf(“Do part 1”);
state = 2; break;state = 2; break;state = 2; break;state = 2; break; a good fit. But if you want a ready-to-use programming and

runtime environment based on UNIX standards, then

DEBROS could be just what you need.

state = 2; break;state = 2; break;state = 2; break;state = 2; break;

case 2:case 2:case 2:case 2:
startTime = getMS();startTime = getMS();startTime = getMS();startTime = getMS();
while (msSince(startTime) < maxMS)) {while (msSince(startTime) < maxMS)) {while (msSince(startTime) < maxMS)) {while (msSince(startTime) < maxMS)) {

Acknowledgments

while (msSince(startTime) < maxMS)) {while (msSince(startTime) < maxMS)) {while (msSince(startTime) < maxMS)) {while (msSince(startTime) < maxMS)) {
if (part2Done) { state = 1; break; }if (part2Done) { state = 1; break; }if (part2Done) { state = 1; break; }if (part2Done) { state = 1; break; }
printf(“Do a little more of part2”);printf(“Do a little more of part2”);printf(“Do a little more of part2”);printf(“Do a little more of part2”);

}}}}
Acknowledgments

Thanks to Andrew S. Tanenbaum and Linus Torvolds for concrete

examples of what can be done if you put your mind to it. Thanks to Vasu

}}}}
break;break;break;break;

default:default:default:default:
printf(“State machine error”);printf(“State machine error”);printf(“State machine error”);printf(“State machine error”); examples of what can be done if you put your mind to it. Thanks to Vasu

Vuppula (NSCL) for urging me to publish my work. And thanks to my wife

(Deborah) for her patience while I spent hours at home learning and working

on DEBROS.

printf(“State machine error”);printf(“State machine error”);printf(“State machine error”);printf(“State machine error”);
return return return return ----1;1;1;1;

}}}}

on DEBROS.

References

return 0;return 0;return 0;return 0;
}}}}

Figure 1. Even simple tasks become complex
References

DEBROS Developer and User Manual, Mark A. Davis, Controls Software

Group, NSCL; http://groups.nscl.msu.edu/controls/

Figure 1. Even simple tasks become complex

when using cooperative multitasking.

