
Parameter EXCALIBUR Competitors 

Frame size 2k x 1.5k pixels   

Maximum frame rate 100Hz, 12 bits 

continuous 

1kHz, 12 bits burst 

30kHz, 1 bit 

histogrammed 

Pilatus II  < 300Hz 

Pilatus XFS  > 10kHz 

Dead time between 

frames 

0 Pilatus II: ~2ms defined by 

chip read out time. 

Pixel size 55 um Pilatus II 172um 

Pilatus XFS 75um 

Dynamic range 12 bits Pilatus XFS 12 bits 

Quantum efficiency ~50% at 15keV ~50% at 15keV 
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EXCALIBUR is an advanced photon counting detector being 

designed and built by a collaboration of Diamond and the STFC.  It is 

based around 48 CERN Medipix3 chips arranged as an 8 x 6 array.  

The main problem addressed by the design of the hardware and 

software is the uninterrupted collection and safe storage of image data 

at rates up to one hundred 2048 x 1536 frames per second.  This is 

achieved by splitting the image into 6 ‘stripes’ and providing a parallel 

data path for each stripe all the way from the detector chips to the 

storage.  This architecture requires the software to control the 

configuration of the stripes in a consistent manner and to keep track of 

the data so that the stripes can be subsequently stitched together into 

frames. 

Abstract 

A 2D position sensitive detector is required for use 

in a range of imaging experiments at Diamond Light 

Source.  Initially the detector will be applied on photon 

beam line I13, but the resulting design may be applied 

on other beam lines and in other applications. 

The detector is based around the Medipix3 device, a 

256 x 256 pixel photon counting detector which has 

three basic operating modes, single-pixel, charge-

summing and colour.  The EXCALIBUR instrument 

will initially support single-pixel and charge-summing 

modes. 

The table right summarises the capabilities of the 

EXCALIBUR detector and draws comparison with the 

Pilatus II and XFS detectors. 

1. Introduction 

The hardware architecture consists of a sensor assembly, a number of front-end 

modules (FEMs) and a cluster of read-out node PCs.  

The sensor assembly consists of three hybrid modules, each containing an 8 by 2 array 

of sensors and Medipix3 chips.  The detector assembly consists of three hybrid modules, 

each containing a large silicon sensor bonded to an array of 8 x 2 Medipix 3 chips.  The 

gaps between the chips on one module are 3 pixels (the minimum possible); the sensor 

pixels that cover these gaps are larger, as shown in Fig 5.  A 124 pixel wide inactive region 

is present between modules due to the presence of wire bond pads connecting the chips to 

their read-out electronics. 

A FEM is provided for each horizontal row of sensors, giving a total of 6 FEMs.  Each 

FEM co-ordinates the acquisition of data by a row of Medipix3 chips and also provides 

access to most of the registers of the 8 Medipix3 chips for the embedded software.  From 

the point of view of the software, a FEM provides an image ‘stripe’ that is 2069 by 256 

pixels.  The seven inter-chip gaps (each of 3 pixels) are included in the output data but do 

not contain valid data. 

Six read-out nodes and one master node make up the computing cluster for 

EXCALIBUR.  The read-out nodes communicate with the FEMs through 10G Ethernet 

fibre optic links.  Connection to the Diamond Light Source network backbone is then made 

through six 1G Ethernet links to a switch with a 10G upstream connection. 
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2. Hardware Architecture 
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The embedded software is based on EPICS using the area detector module.  Above is a UML 

diagram showing an overview of the data path software; the classes ADDriver, NDPluginDriver and 

NDPluginFile are area detector base classes supplied by the module library. 

The AdFem class is responsible for interfacing to the FEM.  It receives image stripes, places 

them into standard area detector buffers and then passes them on for further processing.  In addition, 

it provides EPICS process variables that allow the control of acquisition and the configuration of the 

Medipix3 and FEM devices. 

The pixel arrangement in the stripes is different for each of the pair of FEMs that service a 

sensor module, due to the rotation of the Medipix3 chips.  This is corrected by the AdFemFix class.  

This function is provided as a separate area detector plug-in to allow it to run on a different core to 

the FEM readout, keeping the throughput high. 

Image data is written to file in the HDF5 format by the Hdf5Write class.  The read-out nodes 

each open the same file on the Lustre file system and write to the correct part of the file to assemble 

the stripes into the frame.  Not only does this avoid processing by the instrument; it also utilises the 

multiple parallel write stream capability of Lustre to keep the data rate high.  The file writing plug-in 

utilises the version of the HDF5 software that uses the openMPI parallel processing library. 

3. Software Architecture 

The AdSlaves and AdMaster classes 

(see Software Architecture) together 

provide the mechanism for transferring at 

a low rate (configurable as 1 in N) a 

summary image stream from the read-out 

nodes to the master node.  The AdMaster 

class transfers every Nth stripe to the 

AdSlaves class through a TCP socket. 

The stripes are written into the correct 

place in a single area detector buffer to 

stitch them together.  Once a stripe is 

received from each read out node, the 

complete frame is passed on for further 

processing on the master node.  This will 

normally include an MPEG streaming 

plug-in to provide data for a suitable 

viewer. 

On the left is an EDM screen showing 

the stitched summary image.  The large 

horizontal gaps are clearly visible. 

4. Summary Image 
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The gaps between the adjacent Medipix3 chips are required to be filled, either by a constant 

value or by interpolation between the pixels surrounding the gap.  The chip layout and gap details 

are shown above.  The class responsible for the work is AdGapFill (see Software Architecture). 

The large gaps between the modules are always filled with a constant value.  The HDF5 file 

format provides the ability to fill automatically gaps in the recorded data with a constant.  

Advantage is taken of this feature to fill the large gaps without increasing the data rate of the 

system. 

The small gaps may be filled with a constant value or interpolated, according to configuration.  

The small vertical gap pixels are already present in the stripe data, so the gap filling plug-in writes 

the constant or interpolated value as appropriate.  The small horizontal gaps are created by adding 

extra rows to the upper stripe of each pair.   

 

5. Filling the Gaps 

Interpolating across the small gap between stripes is not straightforward; 

it requires data communication between the adjacent gap filling plug-ins.  

The plug-in on the upper side of the gap receives the top row of pixels from 

the plug-in on the lower side.  The sensor areas of the pixels adjacent to the 

small gaps extend over the gap, as shown in green on the right of the 

diagram.  This means that photons landing in the pixel gaps are still 

captured.  Interpolation is therefore concerned with sharing captured 

photons between the edge pixels and the gap pixels. 

The Composite image on the right shows the effect of the gap filling 

modes; the top stripe is constant fill, the middle is mean fill, the bottom is 

linear fill. 

The testing of the software was carried out in two phases.  

The first phase used a software simulation of the hardware with 

an extensive set of automatic test routines.  This provided an 

automatic record of the testing undertaken and an easy way of 

repeating the tests at any stage during instrument development.  

An example test report for the gap filling module is shown 

above. 

The second phase was a period of integration and testing 

with the instrument hardware.  This necessarily involved rather 

more manual intervention and grew as the various parts of the 

instrument were brought together. 

 

6. Testing 
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