
Parameter EXCALIBUR Competitors

Frame size 2k x 1.5k pixels

Maximum frame rate 100Hz, 12 bits

continuous

1kHz, 12 bits burst

30kHz, 1 bit

histogrammed

Pilatus II < 300Hz

Pilatus XFS > 10kHz

Dead time between

frames

0 Pilatus II: ~2ms defined by

chip read out time.

Pixel size 55 um Pilatus II 172um

Pilatus XFS 75um

Dynamic range 12 bits Pilatus XFS 12 bits

Quantum efficiency ~50% at 15keV ~50% at 15keV

Controlling the EXCALIBUR Detector

J. A. Thompson, I. Horswell, J. Marchal, U. K. Pedersen, Diamond Light Source, Oxfordshire, UK.

S. Burge, J. D. Lipp, T. Nicholls, Science and Technology Facilities Council, Oxfordshire, UK

EXCALIBUR is an advanced photon counting detector being

designed and built by a collaboration of Diamond and the STFC. It is

based around 48 CERN Medipix3 chips arranged as an 8 x 6 array.

The main problem addressed by the design of the hardware and

software is the uninterrupted collection and safe storage of image data

at rates up to one hundred 2048 x 1536 frames per second. This is

achieved by splitting the image into 6 ‘stripes’ and providing a parallel

data path for each stripe all the way from the detector chips to the

storage. This architecture requires the software to control the

configuration of the stripes in a consistent manner and to keep track of

the data so that the stripes can be subsequently stitched together into

frames.

Abstract

A 2D position sensitive detector is required for use

in a range of imaging experiments at Diamond Light

Source. Initially the detector will be applied on photon

beam line I13, but the resulting design may be applied

on other beam lines and in other applications.

The detector is based around the Medipix3 device, a

256 x 256 pixel photon counting detector which has

three basic operating modes, single-pixel, charge-

summing and colour. The EXCALIBUR instrument

will initially support single-pixel and charge-summing

modes.

The table right summarises the capabilities of the

EXCALIBUR detector and draws comparison with the

Pilatus II and XFS detectors.

1. Introduction

The hardware architecture consists of a sensor assembly, a number of front-end

modules (FEMs) and a cluster of read-out node PCs.

The sensor assembly consists of three hybrid modules, each containing an 8 by 2 array

of sensors and Medipix3 chips. The detector assembly consists of three hybrid modules,

each containing a large silicon sensor bonded to an array of 8 x 2 Medipix 3 chips. The

gaps between the chips on one module are 3 pixels (the minimum possible); the sensor

pixels that cover these gaps are larger, as shown in Fig 5. A 124 pixel wide inactive region

is present between modules due to the presence of wire bond pads connecting the chips to

their read-out electronics.

A FEM is provided for each horizontal row of sensors, giving a total of 6 FEMs. Each

FEM co-ordinates the acquisition of data by a row of Medipix3 chips and also provides

access to most of the registers of the 8 Medipix3 chips for the embedded software. From

the point of view of the software, a FEM provides an image ‘stripe’ that is 2069 by 256

pixels. The seven inter-chip gaps (each of 3 pixels) are included in the output data but do

not contain valid data.

Six read-out nodes and one master node make up the computing cluster for

EXCALIBUR. The read-out nodes communicate with the FEMs through 10G Ethernet

fibre optic links. Connection to the Diamond Light Source network backbone is then made

through six 1G Ethernet links to a switch with a 10G upstream connection.

FEM

FEM

FEM

FEM

FEM

Detector head

Sensor/Medipix3

Hybrids

Readout Node

Readout Node

Readout Node

Readout Node

Readout Node

Master Node

10GigE

Optical Links

Network

Readout Node FEM

2. Hardware Architecture

Ffmpeg

TheSystem

«startup script»

MasterIoc

Hdf5W rite

AdSlaves

Each of these IOC

objects runs on

a seperate processor.

ADDriver
Provision of real time summary

image built from summary stripes.

NDPluginDriver NDPluginFile

AdFemFix

«startup script»

ReadoutIoc

Hdf5W rite

AdMaster

AdFem

AdGapFill

Fixing of pixel layout. Reception of stripes from the FEMs.

Gap filling.

Transmission of

summary stripe

to master node.

Reception of

summary stripes

from the

readout nodes.

6

The embedded software is based on EPICS using the area detector module. Above is a UML

diagram showing an overview of the data path software; the classes ADDriver, NDPluginDriver and

NDPluginFile are area detector base classes supplied by the module library.

The AdFem class is responsible for interfacing to the FEM. It receives image stripes, places

them into standard area detector buffers and then passes them on for further processing. In addition,

it provides EPICS process variables that allow the control of acquisition and the configuration of the

Medipix3 and FEM devices.

The pixel arrangement in the stripes is different for each of the pair of FEMs that service a

sensor module, due to the rotation of the Medipix3 chips. This is corrected by the AdFemFix class.

This function is provided as a separate area detector plug-in to allow it to run on a different core to

the FEM readout, keeping the throughput high.

Image data is written to file in the HDF5 format by the Hdf5Write class. The read-out nodes

each open the same file on the Lustre file system and write to the correct part of the file to assemble

the stripes into the frame. Not only does this avoid processing by the instrument; it also utilises the

multiple parallel write stream capability of Lustre to keep the data rate high. The file writing plug-in

utilises the version of the HDF5 software that uses the openMPI parallel processing library.

3. Software Architecture

The AdSlaves and AdMaster classes

(see Software Architecture) together

provide the mechanism for transferring at

a low rate (configurable as 1 in N) a

summary image stream from the read-out

nodes to the master node. The AdMaster

class transfers every Nth stripe to the

AdSlaves class through a TCP socket.

The stripes are written into the correct

place in a single area detector buffer to

stitch them together. Once a stripe is

received from each read out node, the

complete frame is passed on for further

processing on the master node. This will

normally include an MPEG streaming

plug-in to provide data for a suitable

viewer.

On the left is an EDM screen showing

the stitched summary image. The large

horizontal gaps are clearly visible.

4. Summary Image

Medipix3 device

Large

(124

pixel)

gap

Real pixel Gap pixel Sensor area

Small (3 pixel) gap

The gaps between the adjacent Medipix3 chips are required to be filled, either by a constant

value or by interpolation between the pixels surrounding the gap. The chip layout and gap details

are shown above. The class responsible for the work is AdGapFill (see Software Architecture).

The large gaps between the modules are always filled with a constant value. The HDF5 file

format provides the ability to fill automatically gaps in the recorded data with a constant.

Advantage is taken of this feature to fill the large gaps without increasing the data rate of the

system.

The small gaps may be filled with a constant value or interpolated, according to configuration.

The small vertical gap pixels are already present in the stripe data, so the gap filling plug-in writes

the constant or interpolated value as appropriate. The small horizontal gaps are created by adding

extra rows to the upper stripe of each pair.

5. Filling the Gaps

Interpolating across the small gap between stripes is not straightforward;

it requires data communication between the adjacent gap filling plug-ins.

The plug-in on the upper side of the gap receives the top row of pixels from

the plug-in on the lower side. The sensor areas of the pixels adjacent to the

small gaps extend over the gap, as shown in green on the right of the

diagram. This means that photons landing in the pixel gaps are still

captured. Interpolation is therefore concerned with sharing captured

photons between the edge pixels and the gap pixels.

The Composite image on the right shows the effect of the gap filling

modes; the top stripe is constant fill, the middle is mean fill, the bottom is

linear fill.

The testing of the software was carried out in two phases.

The first phase used a software simulation of the hardware with

an extensive set of automatic test routines. This provided an

automatic record of the testing undertaken and an easy way of

repeating the tests at any stage during instrument development.

An example test report for the gap filling module is shown

above.

The second phase was a period of integration and testing

with the instrument hardware. This necessarily involved rather

more manual intervention and grew as the various parts of the

instrument were brought together.

6. Testing

October 2011. For more information please contact jonathan.thompson@diamond.ac.uk

