Simplified instrument/application
development and system integration using

| 1bera BASE software framework

Matej Kenda, Toma Beltram, Tomaz Juretic, Borut Repi¢, Damijan Skvarc, Crt Valentincic, Instrumentation Technologies, Solkan, Slovenia

Abstract

Development of many appliances used in scientific environment forces us to face
similar challenges, often executed repeatedly. One has to design or integrate
hardware components. Support for network and other communications standards
needs to be established. Data and signals are processed and dispatched. Interfaces are
required to monitor and controlthe behaviour of the appliances. At Instrumentation
lechnologies we identified and addressed these issues by creating Libera BASE,
which is a framework composed of several reusable building blocks. Libera BASE
simplifies some of the tedious tasks and leaves more time to concentrate on real
issues of the application. Further more, the end product quality benefits from larger
common base of this framework.

Increasing Role of Software in

Reconfigurable Instruments

Software became an essential part of electronic devices. Chips are be-
coming integrated and programmable and software needs to control
them:

e FPGA by its nature
 ADCs, VCXOs that are controlled over SPI, 12C buses.

Software interfaces are the points where people communicate with
the instrument and define user experience through graphical, control,
programming and other interfaces.

There is a set of concepts that is occurring repeatedly in measurement
Instruments:

 hardware detection, platform management

 control of functionality implemented in FPGA

« configuration parameters

 notification of changes

 signal acquisition, processing and dispatching

 scaffold for running instrument applications

e supporting standard control system interfaces

APPLICATION) APPLICATION

-~ Instrumentation
clanv .
o Technologies

PLATFORM
l—%

HW + sSwW
ARCHITECTURE FRAMEWORK

Working together.

'\ APPLICATION

APPLICATION APPLICATION

Libera BASE

Libera BASE is a software framework for application development on
different hardware architectures with intuitive structure and program-
ming interfaces. It

 narrows the gap between customer’s hardware and the machine’s
control system.

e helps to focus on the application, for which the instrument is
designed for

 simplifies integration into various control systems, however it does
not aim to act as a replacement for them.

 ensures higher reliability

Concepts and Building Blocks

e fw: MicroTCA-compliant platform management

« bmc: Hardware abstraction layer (uses IPMI, USB, OpenHPI)

 |km: PCI Linux kernel module relies on a set of standardised FPGA
registers

 ireg: Application parameters as hierarchical tree

 isig: Signal acquisition, processing and dispatching

 japp: Application development framework, plugins

« mci: Client programming interface (API) for Linux and Windows:
exposes registry and access to signals

« tools: Simple command line tools for automation and scripting

« adapters:forMatlabandLabView scripts, web, EPICS (EDM, pyEpics),
Tango CS, FESA

Powered by Libera
BASE

Basic Application
Support Environment

Achitecture of Libera BASE software framework

t ¢+ ¢+ ¢+ ¢t ¢t 1t

Linux Windows
MCI Client MCI Client EPICS WEB OFFICE Tango MATLAB

oy oy Yy Y v

Measurement and Control Interface
(MCD

Application Logic

E: Plugins

Linux Kernel

Module
EMBEDDED
COMPUTER
PCI USB I’C Ethernet
Standardized Application Specific
Interfaces Interfaces
MTCA
Platform
NGMT
Standard Application Software
Cores Logic
AMC MODULE

t

Input

The framework can be easily adapted to support different hardware
architectures.

Example of registry parameters of an FPGA digital amplifier

MatlabAdaptor EPICSAdaptor CLI

- MCI

input
source=Internal
coupling=AC
termination=1K
preamp

type=PR \\
polarity=Positive //// \
amp

coarse
gain=-127
vga=1162
pre_att=-32
post_att=-16
offset=-20000
offset=0

dac=20000
fine \
gain=1.99998474121094 n
register=131071 1app

offset=0
bias
enable=false
signal=0
register=0
monitor=-4
update_period=1000
switching
enable=false
switch_delay=0
register=0
holdoff_time=0 lkm
register=0

gate
enable=false
polarity=Negative
beam
enable=false
polarity=Negative

PCI

FPGA

FPGA

isig

—

EPICSAdaptor

MatlabAdaptor

Instruments leverage Libera BASE

Libera BASE accelerates development of instrument applications.

140000

Application defines
- set of user settable parameters ww
e signals o |

20000

e processing and algorithms.)

u Application
¥ | ibera BASE

Libera Libera Libera Libera Libera
LLRF Spectra Birilliance+ Single Hadron
Pass H

Instrumentation Technologies, d. d., S
Velika pot 22, SI-5250 Solkan, Slovenia, P: +386 5 335 26 00O, F: +386 5 335 26 O], QL/FT)
E: info@i-tech.si, sales@i-tech.si, support@i-tech.si, W: http://www.i-tech.si

'<runtime_config

'<node name="synthetic_data">

'<node name="receiver_enable">

In September 2011, the following instruments use Libera BASE: Libera
Brilliance+, Libera Single Pass H, Libera Spectra, Libera LLRF, Libera
Hadron.

Measurements of source code size reveal that the share of application-
specific software is around 10% of total software; remaining 90% is Lib-
era BASE.

Libera BASE supports different hardware achitectures

Simplified integration based on MCI API

The MCI programming interface is designed to be simple, intuitive and
powerful. Different instruments expose the same networked API, which
can be used from GNU/Linux and Windows clients. MCI is used to im-
plement different client programs and adaptors.

Different instruments have already been used from the many client ap-
plications, for example:

 graphical user interfaces

« command line interface

« Matlab, SClLab

e OpenOffice.org spreadsheet

* mobile devices: iPhone, iPad, Android-based phones
e web browsers

« EPICS EDM

Examples of integration with different applications.

Online Sensors

4 » M 2 [192.168.1.106:3000/ & |(Googie)
bs3

ID_0 50 de
ID_1 57 de
ID_2 54 degrees 1 |Left Front Fan Right Front Fan

L E ront Fan
ID_3 48cegrees | | 3000 4s7eﬂksm 4369 [lis0
ID_4 38 degrees Left Middle F: ait 2

gre
gre iddle Fan

ID_5 49 degrees. 4359]1««: 4349 |las00 ‘
gre

ID_6 46 degrees.

i

LeftRear Fan Right Rear Fan

EormmA R pa il S
e “f. 4359 s 4359]“T‘

B T T R T Ty S

0

CPU temp (C) RAF3 FPGA (C) RAF3 ADC (C) CPU usage (%)

Fan control
Fans (rpm)
5918 5865 5659 6086 5992 6144

#include <iostream>
#include "mci/mci.h"
#include "mci/node.h"

int main(int a_argc, char* a_argv[])
{

mci::Init(a_argc, a_argv);

auto root = mci::Connect("192.168.1.100", mci::Root::Application);

//
//I Dump complete tree of registry parameters
5 4
auto nodes = mci::SubTree(root);
for (auto i(nodes.begin()); i != nodes.end(); ++i) {
std: :cout
<< i->GetFullPath() << " ="
<< i->ToString() << std::endl;

it il 116788
410427285 410120045 306917163 413495657 409990312 44344 157639 116680
419634465 410074038 397125607 413630540 410166386 a3s51 157646 116740

}

/7

// Access and modify a parameter

&l

mci::Path path = mci::Tokenize(
"boards.raf3.tbt.spike_removal.averaging_window");

auto n = root.GetNode(path);

IOICIC NATIONAL INSTRUMENTS
// Read a numeric parameter
int32_t aw = n;

(ml i LabVIEW
std::cout << "Averaging window: " << aw << std::endl; Eplcs
// Modify a numeric parameter ®
aw = 16;
n = aw;

mci::Shutdown();

Customisation of Instruments

Several tools are provided to customise Libera instruments:
« FPGA development kit (FDK)

« FPGA to registry map (no programming needed)

« Software development kit (software plugins)

New parameters and signals implemented when extending the instru-
ment are exported through MCI APl in the same way as those originally
provided by the instrument.

libera-ireg dump boards.gdx1.fdk_reg
fdk_reg
RW_example_reg=0
DDR_input_select=0
synthetic_data
length=0
enable=false
receiver_enable
raf3=true
raf4=true
rafS=true
rafé=true

Example of XML mapping file and the
resulting entries in registry

<?xml version="1.0" encoding="UTF-8"7>

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="/opt/libera/xsd/runtime_regs.xsd"
version="2.2-1">
<reg_node name="RW_example_reg" offset="0" flags="read write" type="ULong"/>
<bit_node name="DDR_input_select" offset="8" bit_offset="0" bit_size="1" flags='lread write persistent"” type="ULong"/>

<bit_node name="length" offset="0x10" bit_offset="7" bit_size="25" flags="rjad write persistent" type="ULong"/>
<bit_node name="enable" offset="0x10" bit_offset="2" bit_size="1" flags="read write persistent" type="Bool"/>
</node>

<bit_node name="raf3" offset="0x18" bit_offset="0" bit_size="1" flags="read |write persistent" type="Bool"/>
<bit_node name="raf4" offset="0x18" bit_offset="1" bit_size="1" flags="read |write persistent" type="Bool"/>
<bit_node name="rafr5" offset="0x18" bit_offset="2" bit_size="1" flags="read write persistent" type="Bool"/>
<bit_node name="rafr6" offset="0x18" bit_offset="3" bit_size="1" flags="read write persistent" type="Bool"/>
</node>
</runtime_config>

) Instrumentation
Technologies

When your users demand stability.

