
Compilation / Linking

Packaging Releasing

Identification of dependencies

13th International Conference on Accelerator and Large Experimental Physics Control Systems
 October 10-14, 2011, WTC Grenoble, France

A C/C++ Build System Based on Maven for the LHC Controls System

J. Nguyen Xuan, B. Copy, CERN, Geneva, Switzerland
M. Dönszelmann, Bogazici University, Istanbul, Turkey

The CERN accelerator controls system, mainly written in Java and C/C++, consists nowadays of 50 projects and 150 active developers. The Controls group has

decided to unify the development process and standards (e.g. project layout) using Apache Maven and Sonatype Nexus. Maven is the de-facto build tool for

Java, it deals with versioning and dependency management, whereas Nexus is a repository manager. Even if Maven is primarily designed for Java, a plugin

(Maven NAR) adapts the build process for native programming languages for different operating systems and platforms. Our approach was to combine the best

of the two worlds: NAR/Nexus and Makefiles. Maven NAR manages the dependencies, the versioning and creates a file with the linker and compiler options to

include the dependencies. The Makefiles carry the build process to generate the binaries. Finally the resulting artifacts (binaries, header files, metadata) are

versioned and stored in a central Nexus repository.

Early experiments were conducted in the scope of the Controls group's

Testbed. Some existing projects have been successfully converted to this

solution and some projects start from scratch using this implementation.

Using the same build tool as the Java developers allows the C/C++ teams

to benefit from the same infrastructure (continuous integration server,

binary repository,...) without changing their habits with Makefiles.

Standards are also enforced since the developers have to follow the strict

conventions for directories naming and structure. Moreover, the

development/release/deployment process is unified for the Java and the C/

C++ teams.

Additional features have to be implemented to fit the developers

requirements such as the possibility to use a framework to run unit tests.

We plan to integrate the CERN modifications back to the official NAR

plugin in order to contribute to its community.

ICALEPCS'11

Conclusions

WEPKS026

Introduction

1. mvn nar:makedep

Identification of

dependencies
Compilation / Linking

Packaging Releasing

2. mvn compile

A project is described by a

file called pom.xml

(Project Object Model). It

contains metadata along

with a list of dependencies.

The project is identified by

a GAV (groupId, artifactId,

version).

This particular pom

belongs to a C++ project.

What differs it from a Java

project is the type of the

packaging and the

dependencies: NAR.

The generated Makefile contains the

compiler and linker options. It has to be

included by the main Makefile which

handles the compilation process.

The results of the

build are put in a

specific folder. The

naming and the

directory structure

must be respected.

A binary repository (Maven standard

Sonatype Nexus) hosts all the

versioned artifacts. A web interface

allows searching for available

artifacts.

With Maven NAR, mainly two types of artifacts are

typically published:

1) Public headers

2) Platform dependent Library or Binary

Several platform dependent artifacts can be published.

When a Maven build is triggered, the right artifact for the

targeted platform will be automatically picked.

Workflow and concept of reuse

Project example Dependent project

3. m
vn package

4. mvn deploy

Maven goals:

1. mvn nar:makedep - This goal from the NAR plugin downloads and unpacks the dependencies locally, and generates a Makefile with the dependencies information.

2. mvn compile - This goal relies on Makefiles. It simply calls make to start the build process.

3. mvn package - Thanks to the strict directory structure, Maven NAR knows where to pick up the different binaries and packages them into several artifacts.

4. mvn deploy - Uploading the artifacts to Nexus.

Identification of

dependencies
Compilation / Linking

Packaging Releasing

Parent project

Identification of

dependencies
Compilation / Linking

Packaging Releasing

Let’s look at those 4 steps with a concrete example, using Maven, Nexus and Makefiles

Comparison of this implementation based on Maven with the
previous implementation based on GNU Makefiles

Maven NAR Makefiles implementation

Cross-compilation Custom compilers
can be defined

Well supported by
Makefiles

Dependencies
management

Automatically
managed

Managed by hand

Versioning A version must be
defined in the pom.xml

Not existing or manually
managed

Directory standards Conventionsare
required

Not existing

	WEPKS026-poster.vsd
	Page-1

