
LHC Operational

States

13th International Conference on Accelerator and Large Experimental Physics Control Systems
 October 10-14, 2011, WTC Grenoble, France

State Machine Framework and its Use for Driving

LHC Operational States

M. Misiowiec, V. Baggiolini, M. Solfaroli Camillocci, CERN, Geneva, Switzerland

LHC follows a complex operational cycle with 12 major phases that include equipment tests, preparation, beam injection, ramping and squeezing, finally followed by the

physics phase. This cycle is modelled and enforced with a state machine, whereby each operational phase is represented by a state. On each transition, before

entering the next state, a series of conditions is verified to make sure the LHC is ready to move on. Java State Machine Framework was developed to cater for building

independent or embedded state machines. They safely drive between the states executing tasks bound to transitions and broadcast related information to clients. SM

framework encourages users to create their own actions. Simple configuration management allows the operators to define and maintain complex models themselves.

State Machine Framework and its first instance have been operationally used for almost a year now. Over

the period it has become an integral constituent of the LHC controls software architecture, running impeccably

throughout. Its open architecture promoted active participation of the users, LHC operators, in the development

and maintenance of both, the instance and framework.

State Machine Framework is a general purpose library aimed at both standalone or embedded use wherever

state machine concepts need putting in place. Minimal dependency on the accelerator controls infrastructure

makes it a comfortable choice for any project seeking a similar tool.

ICALEPCS'11

Conclusions

WEPKS005

Perfect for:

building a state machine service in a multi-tier system

embedding state machine within any application

outsourcing actions development

easy maintenance of XML/DB configuration

heavily concurrent environment

Deployment in LHCState Machine Framework

Designed for Quality

LHC Sequencer executes preconfigured series of tasks – sequences. They move the machine

through its operational lifecycle. Each phase of the lifecycle, an LHC operational state, is guarded by a

set of conditions – checks – supervised by LHC Operational States state machine service.

Completing Move

Results of the move are returned to the caller and

asynchronously published to all the listening

clients. They are also persisted and logged.

Client requests are limited with Role

Based Access system to the operators of

CERN Control Centre.

State Machine is composed of states connected by

transitions and associated with actions. Exactly one state

is initial. State machine holds a status with an active state

as its most essential attribute.

Actions Development
Actions are:

tasks – operations executed in the environment

conditions – checks performed on the environment

Actions are developed to the dedicated API by domain

experts and associated by configuration. Variety of

information is provided to the action execution, e.g. client

credentials. An action can be placed in one of three

locations with regard to a transition or state: OnExit,

OnTransition or OnEntry.

Configuration
SMF provides a high degree of flexibility in configuring the

layout of transitions and actions. Configuration of SM

instance is held in XML or database. In each case, template

schema is provided to verify the syntax.

XML document, readable and simple to maintain, was the

choice for LHC Operational States. It has let operators

manage the configuration fully on their own which has

proven stimulating for maintenance of the instance. XML

configuration is stored in SVN under version control.

Safety

State machines open to a parallel use

of many clients are prone to errors.

Diligent effort was taken to design

flawless concurrency engine serving

multiple clients. A year of intensive

use has confirmed a bug-free

environment.

Embedding

Framework supports an embedded

use within another application. The

instance is hooked into the controlling

application using Spring context. All

the client calls are executed locally,

between Java threads. Embedded

mode is achieved by configuration.

Interoperability

Various middleware protocols are

supported to communicate status

messages from the SM instance.

OnExit and OnEntry actions are associated with states and

executed for all the transitions leaving or reaching a state.

OnTransition actions are linked to a transition.

SM GUIs

GUIs were developed to

monitor the Sequencer

requests and visualize the

state machine model.

Especially practical in the

early stage of model

design, they are used on a

daily basis by LHC

operators.

Muti-tiered Architecture

LHC Sequencer

move („BEAM DUMP”, „PREPARATION”)

OnTransition

check collimator pos

check start squeeze

OnEntry

check QFB off

RAMP => ADJUST

transition with actions

LHC Operational States state machine instance

manages transitions between the LHC states and

monitors execution of the checks.

move

c
h
e
c
kva

lid
at

e

Move
Moving from state A to B is valid only

if A is active and there exists a

transition from A to B. Set of actions

can be assigned to the model and

required to be successfully executed

during transitions.

Alice

Ben

SM Service

listeners
competing

clients

move (A, B)

move (A, C)

success failure

Alice wins, move to B

RMI JMS

change to Bnotify clients:

XML

configure
layout

attach actionsperform()

SM Service startup

Directory
Service

look

persist status

execute actions
on environment

perform()

client tier

middleware

middle tier

OnEntry

notify clients

persist state

OnTransition

run checks

perform tasks

OnExit

validate move

verify context

BEAM DUMP PREPARATION

conditions

supplied by

Domain Experts

configuration

maintained by

Operators

XML

A
B

C

move()

up SM

SM Checklist

	WEPKS005.vsd
	Page-1

