

Z. Geng, SLAC, Menlo Park, California, U.S.A.

Introduction

An Object Oriented Framework of EPICS
for MicroTCA Based Control System

 EPICS has introduced object oriented (C++) interfaces to most of the

core services. But the major part of EPICS, the run-time database, only

provides C interfaces, which is hard to involve the EPICS record concerned

data and routines in the object oriented architecture of the software. This

paper presents an object oriented framework which contains some abstract

classes to encapsulate the EPICS record concerned data and routines in

C++ classes so that full OOA (Objected Oriented Analysis) and OOD

(Object Oriented Design) methodologies can be used for EPCIS IOC design.

We also present a dynamic device management scheme for the hot swap

capability of the MicroTCA based control system.

class OOEPICS Base Classes

epicsData

- name: string

- recordData: dbCommon *

- processNumber: long

- valChanged: int

+ initRecord() : virtual void

+ process() : virtual void

+ checkValueChange() : virtual void

+ forceProcess() : void

+ getProcessNumber() : long

+ valueChanged() : void

epicsDev ice

- name: string

ai

+ getValue() : double

+ putValue(double) : void

ao

+ getValue() : double

+ putValue(double) : void

wav eform

+ getValue(int) : data

+ putValue(data, int) : void

dev iceConfig

+ deviceCreate() : void

+ deviceAssociation() : void

+ deviceInit() : void

+ deviceSet() : void

+ deviceExtend() : void

dev iceManager

- deviceTypeList

- deviceInstanceList

- dataInstanceList

- internalDataInstanceList

+ deviceTypeRegister() : void

+ deviceInstanceRegister() : void

+ dataInstanceRegister() : void

+ internalDataInstanceRegister() : void

+ createDevice() : void

+ connectDevice() : void

+ initDevice() : void

+ setDevice() : void

+ extendDevice() : void

+ printDeviceType() : void

+ printDeviceList() : void

+ printRecordList() : void

+ printInternalDataList() : void

+ attachRecordToInternalData() : void

+ getInternalData() : void

+ putInternalData() : void

dev iceInterface

dev iceInterface_hw1 dev iceInterface_hw2

algorithm

otherBaseReocrd

Classes to be designed by the user

(suggested, but not part of the

framework)

+configures

+put value to

0..*

+directly controls hardware

via

0..*
+does calculation with

+refers to 0..*

+interrupts +controls hw via

+contains 0..*

+configures

+registers device to +manages devices via

0..*

Base classes of OOEPICS framework

OOEPICS Framework

 The Object Oriented framework for EPICS (OOEPICS) provides several

base classes to encapsulate the details of the record processing. The

EPICS records and the devices are designed as objects which enable the

direct translation of the UML model into EPICS applications. The framework

hides most of the details of the EPICS which enable the user to develop his

EPICS device driver without knowing much of EPICS.

Base Classes

EPICS Data (epicsData)

 EPICS records were defined based on object oriented concept.

Table 1: Comparisons of EPICS Records and C++ Classes

 The class of epicsData is defined for the EPICS record. They are linked

together by the record name.

EPICS Device (epicsDevice)

 The epicsDevice class is an empty class where the user codes need to

be implemented for the control of specific devices.

 The epicsDevice class may contain of:

• epicsData objects for uplink control and monitoring.

• Special logic to perform the device control.

• Algorithms to do signal processing, calibration and optimization.

• Common logical interfaces to interact with physical device.

Device Management (deviceManager and deviceConfig)

 The deviceManager and deviceConfig provide a common way to create,

associate, initialize and set up a device control module in user IOC. They

also provides the EPICS API that can be called in the IOC shell. In principle,

the user does not need to create any IOC shell commands.

EPICS Records C++ Classes

Fields Attributes

Record Support Methods (platform independent)

Device Support Methods (platform dependent)

Codes Generation

 The tool of “epics_driver_template” is designed to generate the source

code template from the EPICS database file.

 The tool will compile the database file into C strings and then use them

to initialize the epicsData objects. A derived device class will be generated

with the epicsData objects as attributes. A derived deviceConfig class will

be generated which allows to define the procedure to create, initialize and

setup the device objects.

act Framewor...

Start

Define EPICS database with VDCT

databaseFile

Source codes generation

databaseFile

epcisDriverTemplate

Design software by filling the template

epicsDriverTemplate

deviceDriverModule

Add dev ice driv er into IOC

deviceDriverModule

End

Design procedure with
OOEPICS

class EPICS Base

«data_entity»

Record

«service»

lockSet

«service»

databaseAccess

«service»

channelAccess

«thread»

dbCaLink

«thread»

databaseScaner

«thread»

scanOnce

«thread»

scanX

notes

X = 10, 5, 2, 1,

0.5, 0.2, 0.1

«thread»

CAServ er+uses

+process

records

through

+lock records through

+access

CA link

through

+uses

+uses

+access

DB link

through

+access

1..*

+belongs to+lock

1..*

EPICS base modules acting on records

Dynamic Records Loading

 The EPICS IOC needs to support hot swap feature of MicroTCA systems, which means,

loading the device drivers for the new boards without rebooting the IOC software. So loading

EPICS records after iocInit() should be supported. Several challenges need to be resolved to

load a record during run time:

• Setup the locksets for the newly loaded records.

• Convert PV links to DB link or CA link during record initialization.

• Modify the links of existing records.

 For solving the problems listed above, a new source file (dbRecordDynamic.c) is added to

the EPICS base. (https://blueprints.launchpad.net/epics-base/+spec/dynamic-record-loading)

Conclusion

 The OOEPICS framework provides a way to fully access the EPICS

records from the user code. The object oriented technology can directly

map to EPICS design. It also provides a common way to create, initialize

and setup the device driver from the IOC shell. It also enables the user to

do EPICS development without knowing much of EPICS, avoiding the long

learning curve of EPICS.

 The dynamic records loading development provides a good support for

hot-swappable system control which enables a complete EPICS based

solution for MicroTCA system in the following projects at SLAC.

