
LHC CERN

TE

INTENSITY
FLG INTENSITY ERR

INTENSITY A16

FLG INTENSITY A VALID

INTENSITY B
16

FLG INTENSITY B VALID

FLG INTENSITY A NOT B

16 FLG_SPS_SBF

16SETUP BEAM LIMIT FLAG
LOWER LIMIT

1 OUT OF 2
STANDARD

FAIL_SAFE_HIGH_INTENSITY : int := 6.5535 * 10^14;

SPS_SMPC_SBF (

 SETUP_BEAM_LIMIT : int,

 INTENSITY_A : int,

 FLG_INTENSITY_A_valid : bool,

 INTENSITY_B : int,

 FLG_INTENSITY_B_valid : bool,

 FLG_SPS_SBF : bool

) :=

 exists INTENSITY : int. (

 (INTENSITY =

 if FLG_INTENSITY_A_valid then INTENSITY_A;

 if else FLG_INTENSITY_B_valid then INTENSITY_B;

 else FAIL_SAFE_HIGH_INTENSITY;

)

 AND

 FLG_SPS_SBF =

 if INTENSITY <= SETUP_BEAM_LIMIT then TRUE;

 else FALSE

);

Abstract
Programmable Logic Devices (PLD) such as Field Programmable Gate

Arrays (FPGA) are becoming more prevalent in protection and safety-related

electronic systems. When employing such programmable logic devices, extra

care and attention needs to be taken. The designer’s confidence can be incre-

ased using techniques such as Formal Methods, exhaustive Hardware De-

scription Language (HDL) code simulation and hardware testing. An exam-

ple is given for one of the critical functions of the Safe Machine Parameters

(SMP) system, used in the protection of the Large Hadron Collider (LHC) at

CERN.

CERN is also working towards an adaptation of the IEC-61508 lifecycle

designed for Machine Protection Systems (MPS), and the High Energy Phy-

sics environment, implementation of a protection function in FPGA code is

only one small step of this lifecycle.

SAFE MACHINE PARAMETERS (SMP)
A complex Machine Protection System (MPS) has been designed to protect

the LHC accelerator, a fundamental part of the MPS is the Safe Machine Pa-

rameters Controller (SMPC). For the correct protection of the LHC and its

accelerator complex, several parts of the MPS require information about the

machine's operational parameters. Values such as beam intensities, machine

energies, squeezing factors, amongst several others, must be broadcast

around the accelerator complex to correctly configure the MPS, and sent to

the extraction interlock systems to ensure the correct interlocking of beam

transfer between the Super-Proton Synchrotron (SPS) and the LHC.

The outputs of the SMPC either go directly to the extraction interlock con-

trollers, or are broadcast around the machines using the General Machine

Timing (GMT) network. In realising this mission-critical function, the SMP

system makes extensive use of PLDs.

PROGRAMMABLE LOGIC DEVICE PROCESS

The PLD design process starts with clear separation of what is part of the

PFs from other non-critical functions. Functions that are part of the PF are

to follow this PSL process

Specification phase

Each critical function must be decomposed into functional blocks, ones

which lend themselves easily to analysis and understanding. In addition,

each must be capable of being readily specified using a formal language.

For example, the block diagram and its formal version of the SPS Setup

Beam Flag (SBF) is shown on figure. The formal language used in this ex-

ample is Predicate Logic. The key strength of this Predicate Logic formal

language is in interpretation: if correctly written, it can only be understood

by designers in a single way, which is not always the case for a traditional

specification. The formal language also allows a formal verification of some

design parameters, allowing a mathematical verification the completeness

and the consistency of the specification.

O
u

tp
u

t
C

ir
cu

it

Probe
History

Stimulus

Embedded
Logic Probe

DUT
HardwareIn

p
u

t
C

ir
cu

it

Te
st

er
 C

ir
cu

it

Te
st

er
 C

ir
cu

it

Response

Hardware Tester

Device
History

Coverage

UUT RTL
or

UUT Gate

In
p

u
t

B
FM

O
u

tp
u

t
B

FM

Recorder

ResponseStimulus

Simulation Test-bench

MACHINE PROTECTION SYSTEM LIFECYCLE

During the development of the SMPC, and some of the other MPS sub-

systems, common themes and ideas have began to emerge. The combination

of these ideas has led to the concept of a MPS Lifecycle (MPSL), based on

the IEC 61508 overall system lifecycle. The MPSL concept allows a consis-

tent approach to the evaluation of existing parts of the MPS, whilst at the

same time providing a framework for the development of new protection sys-

tems.

The part of the MPSL which is relevant to the programmable logic device

flow is that related to the implementation of so-called Protection Functions

Implementation phase

Each of the smaller functional blocks which were conceived in the previous

step are then implemented. The actual implementation phase is a very small

part of the overall time spent on PLD firmware development. The vast major-

ity of the time is spent on simulation and testing. Hardware Description Lan-

guage (HDL) code is written to describe PLD function. The designer should

always know what the expected result of the synthesis process is to be, this

should be also verified using the output of synthesis tools. This kind of verifi-

cation is much easier when the blocks are small and readily understood.

Software simulation phase

Software simulation is carried out on the block level as well as on the sys-

tem level. Simulation with code coverage is a fundamental requirement for

critical functions. A software test-bench is required, which should wrap the

Unit Under Test (UUT) inside Bus Functional Models (BFMs), passing stim-

uli to the UUT and recording its responses. Behaviour which is not specified

for the block or the sub-system can be detected and fixed, at the same time

the test-bench should evolve to include new conditions as the weaknesses in

code coverage are identified. It is preferred that a critical function achieves

full code coverage. On the picture below the example of missing code cover-

age is presented.

SPS
Safe

Machine
Parameters

DATA RECEIVER

LHC
Machine
Energy

DATA RECEIVER

LHC
Beam

Intensity

Beam Mode

Squeezing Factor 2

Squeezing Factor 8

LHC Beam Intensity 1

LHC Machine Energy

LHC Beam Intensity 2

Moveable Devices Allowed In

Stable Beams Flag

Squeezing Factor 1

DATA RECEIVERBeam
Presence

Squeezing Factor

LHC General
Machine
Timing

SPS
Machine
Energy

DATA RECEIVER

SPS
Beam

Intensity

SPS Setup Beam Flag

LHC Cycle Flag

CNGS Cycle Flag

HiRadMat Cycle Flag

SPS General
Machine
Timing

Squeezing Factor 5

LHC Beam Presence Flag 1

LHC Setup Beam Flag 2

LHC Setup Beam Flag 1

LHC Beam Presence Flag 2

SMPC

LHC
Safe

Machine
Parameters

SPS Probe Beam Flag

LHC Beam Presence Flag 1

LHC Setup Beam Flag 2

LHC Setup Beam Flag 1

LHC Beam Presence Flag 2

Plan:

Individual
System Tests &
Commissioning

Machine
Checkout &

Beam
Commissioning

Operation

PLD Process

Protection System Process

Equipment under Control (EUC)

Operation

Good understanding of EUC

Hazard Chain Identification and Analysis

Risk Classification

Risk Reduction Determination

Protection Function Specifications

Protection (Sub-)System Specification

Critical versus Non-Critical Partition

Non-Critical Specification Critical Specification

Functional Blocks

Formalisation

Formal Methods

Block Implementation

Block Simulation

Block Hardware Testing

Functional Blocks

Implementation

Simulation

Hardware Testing

System Simulation

System Hardware Testing

Code ReviewCode Review

Integration

Individual System Tests and Commissioning

Machine Checkout & Beam Commissioning

Specification

Implementation

Simulation

HW Testing

DEPENDABLE DESIGN FLOW FOR PROTECTION

SYSTEMS USING PROGRAMMABLE LOGIC DEVICES
M. Kwiatkowski, B. Todd, CERN, Geneva, Switzerland

The 13th International Conference on Accelerator and Large Experimental Physics Control Systems. 10-14th October 2011, Grenoble, France.

Hardware testing phase

Once the blocks have been implemented and simulated, the real hardware

can be generated. This is then tested using a dedicated hardware tester.

Hardware testing is obligatory on the system level but optional at the block

level. The hardware tester generates input stimulus and checks the response

of the Device Under Test (DUT), in much the same way as the simulation test

-bench, but this time using real signals. Its advantage over the software

simulation is its speed and the possibility to introduce real distortions. A very

useful hardware testing tool provided by device manufacturers is an Embed-

ded Logic Probe. The probe is integrated with the design and finally pro-

grammed into PLD DUT. With this analyzer in place it is possible to record

internal signals using a variety of trigger conditions. A typical setup with an

embedded logic probe and the result of analysis is shown on figure below.

