
C
o

n
ve

rt
er

s

DB

cmwlog

. . .

syslog

Log4J

FileWriter DBWriter

Registry
CMW Log Server

Detailed Architecture of the CMW Log Server

Writers

Converters

Registry

syslog

cmwlog

Log4J

Example for deploying server modules as

separate processes

CMW Log Server

13th International Conference on Accelerator and Large Experimental Physics Control Systems
 October 10-14, 2011, WTC Grenoble, France

A Remote Tracing Facility For Distributed Systems

F. Ehm, A. Dworak, J. Lauener, CERN, Geneva, Switzerland

Today CERN's Control System is built upon a large number of C++ and Java services producing log events. In such a largely distributed environment these log messages are

essential for problem recognition and tracing. Tracing is vital for operation as understanding an issue in a subsystem requires analysing log events in an efficient and fast

manner. At present 3'150 device servers are deployed on 1'600 diskless Front End Computers. The servers send log messages via network to an in-house developed central

server which in turn saves them to file. Performance limitations and the lack of several highly desired features made the development of a new solution necessary. The new

CMW Log Server fulfils these requirements by taking advantage of the Streaming Text Oriented Messaging Protocol (STOMP) and ActiveMQ as the transport layer. The

system not only allows storing critical log events centrally in files or in a database but also allows other clients (e.g. graphical interfaces) to read the same events concurrently

by using the provided Java API. Thanks to the ActiveMQ broker technology the system can easily be extended to clients implemented in other languages and is highly

scalable in terms of performance. Long running tests have shown that the system can handle up to 10'000 messages/second.

The new system fulfils all requirements and has been tested for performance and stability. It is designed to serve

multiple reading applications for many equipment or service experts and enables the storage of data in a database or

in size-based rotating files. Users have the possibility to read events online via a graphical interface which is

integrated into existing operation and diagnostic tools. Through the Oracle APEX web interface data can be filtered

and selected in a customized manner. Further, the flexible architecture allows to adapt to new log protocols and

deployment models. First investigations have shown that the system is suitable for other fields of activity such as the

configuration feedback for kernel modules running on Front End Computers.

ICALEPCS'11

Conclusions

WEMAU001

Abstract

Architecture

Log Sources

DB

Log Events

Operators

~4000 Server Processes

Equipment Specialist /

Developer

Collect and unify log events from heterogeneous sources

Loggers Appenders

Stdout

Dispatcher

root

A

A.A A.B

B

B.A

UDP

TCP

File

Async
?

queue

Architecture of the CMWLog C++ Library

Presentation Layer

read events

online

read events

offline

CMW Log Event Viewer
· Read log events online

· Filtering of events by keyword

· Shows available log sources in

tree structure

· Severity level can be set per log source

· Enables recording of events into a local file

Other Readers
· Linux Console client subscribes via JMS API

· Oracle APEX web interface allows filtering with SQL

· Easy to add readers in other languages using STOMP

Key Features
· Unification of log events from various sources

· Storage of data into a database or files

· Support for microseconds

· Automatic discovery of new log sources

· Blacklisting of log sources

· Easy to extend to new log protocols

· Allows for failover and load balancing

· Remote control and monitoring via JMX

· Large support for languages via STOMP

(C/C++/Java/Python/Perl/Ruby/Flash/PHP/...)

· Designed to scale horizontally and vertically

C
M

W
 L

o
g

 G
U

I

O
ra

c
le

 A
P

E
X

C
o

n
s

o
le

Future

Feedback System
Investigations are ongoing to collect and store centrally

server process data like:

· deployment information sent at installation time

e.g. used libraries, version, host, path, etc.

· configuration information sent at startup time

e.g. service type, port, monitoring capabilities, etc.

Supports the idea of automatic detection of newly deployed

processes and central storage of their characteristics. This

could for example simplify maintenance of a large

infrastructure.

CPU load over test run (48h) on CMW Log Server

Performance

Performance Test
· 1'000 C clients publishing 500 Byte at 10'000 msg/sec

· 15 Java Clients subscribed to subset of data

· Resulting distribution load: 30'000 msg/sec

Scaling the System
All components may run as one

fully integrated process or as

distributed standalone programs

for scalability reasons.

CMWLog – A Log Library for C++
· Implements Log4J concepts like Appenders and Loggers

· Support for Windows, LynxOS and Linux

· Thread safe and non-blocking calls

· Small memory footprint

· Depends on C++ standard libraries only

· Policies for handling I/O errors

· Logging to standard output, files, or to a remote host

(TCP & UDP)

· Extendible to other output destinations

Java

send events using a standard log

library Log4J or SLF4J.

C Sources
Send to local rsyslog, syslogd or syslog-ng

which again forwards it to CMW Log Server.

CMW Log Server

rsyslog
syslogd

C C

syslogd

C C

syslog-ng

C C

STOMP C/C++/Java/

Python/Perl/Ruby/

Flash/PHP/...

Server Architecture

Sends list of active

log sources

Log4J

cmwlog

syslog

	WEMAU001_poster.vsd
	Page-1

