
ASSESSMENT AND TESTING OF INDUSTRIAL DEVICES ROBUSTNESS
AGAINST CYBER SECURITY ATTACKS

F. Tilaro, B. Copy, CERN, Geneva, Switzerland

Abstract
CERN (European Organization for Nuclear

Research),like any organization, needs to achieve the
conflicting objectives of connecting its operational
network to Internet while at the same time keeping its
industrial control systems secure from external and
internal cyber attacks. With this in mind, the ISA-99 [1]
international cyber security standard has been adopted at
CERN as a reference model to define a set of guidelines
and security robustness criteria applicable to any network
device. Devices robustness represents a key link in the
defense-in-depth concept as some attacks will inevitably
penetrate security boundaries and thus require further
protection measures. When assessing the cyber security
robustness of devices we have singled out control system-
relevant attack patterns derived from the well-known
CAPEC [2] classification. Once a vulnerability is
identified, it needs to be documented, prioritized and
reproduced at will in a dedicated test environment for
debugging purposes. CERN - in collaboration with
SIEMENS - has designed and implemented a dedicated
working environment, the Test-bench for Robustness of
Industrial Equipments [3] (“TRoIE”). Such tests attempt
to detect possible anomalies by exploiting corrupt
communication channels and manipulating the normal
behavior of the communication protocols, in the same
way as a cyber attacker would proceed. This document
provides an inventory of security guidelines [4] relevant
to the CERN industrial environment and describes how
we have automated the collection and classification of
identified vulnerabilities into a test-bench.

INTRODUCTION

The Internet has become essential for any organization
or company that would like to conduct any sort of
business. On one hand, in Industry this results in an
improvement of the communication from the fabric floor
network to the business level one; but on the other hand,
the Internet has brought a lot of security problems which
cannot be ignored because of the resulting damages and
disasters. Thus, it is necessary to identify methods and
procedures for achieving the dual mission of both
exploiting the advantages provided by the Internet and at
the same time keeping their industrial systems secure
from external and internal attacks.

As we know, the number of hostile applications, worms
and viruses is continuously increasing and hackers are
more and more interested at exploiting common industrial
control systems vulnerabilities [5]. As the well-known
industrial control security expert Joe Weiss testified to the

US Congress, in 2010 more than 180 security incidents
were reported; it is worth to mention the Deepwater
Horizon (BP Mexican Gulf oil spill) counting 11
casualties or the San Bruno gas pipeline explosion, with 8
casualties.

It is evident that industrial security cannot rely only on
IT security techniques and properly configured network
architectures (like firewall, network segmentation,
antivirus software, access management, etc…) which,
however, can provide only a partial protection for the
entire system; this is easily explained if we consider the
fundamental differences in the deployed hardware but
also in the concepts of availability and manageability
between IT and Industrial Systems. On the contrary, new
methodologies aimed at securing industrial systems must
be integrated into IT security standard practises.

This paper mainly focuses on testing industrial
Ethernet-connection-based devices without going into
details on network security configurations.

COMMUNICATION ROBUSTNESS

Any communication between two or more hosts is
regulated by a protocol whose specification defines the
formats, syntax and semantic rules for exchanging
messages – called Protocol Data Units (PDUs) [6] - over
a network. Protocol specifications are typically written in
natural - not deterministic - language and sometimes
cannot state how to handle all the possible faulty inputs;
so many decisions are left to the implementer. Hence it is
clear that distinct implementations of the same protocol
handle PDUs in different ways.

Due to this heterogeneity, each implementation could
present many issues related to services availability,
performance and even security: once a hacker has figured
out some malformed PDUs or sequences of them which
are not properly handled, the entire system is under risk
[4]. Ideally all these defects affecting the protocol
implementations should be detected and fixed by the
manufacturers, but they are sometimes actually detected
and reported by external communities. This explains the
need of performing automated testing of protocol
implementations, especially for critical systems.
In this paper we present a methodology for automated
testing of protocol implementation robustness, which
must be seen as the ability of the system to handle
exceptionally malformed PDUs and stressful network
conditions, while maintaining the normal operational
behaviour. This evaluation proves a greater ability of
analyzed networked systems to survive in the face of

WEPMU029 Proceedings of ICALEPCS2011, Grenoble, France

1130C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Protection and safety systems

malformed input due to possible involuntary mistakes or
explicit attack attempts.

As explained in the following section of the document,
the enumeration of all possible faulty PDUs for each
protocol is exponential in the number of protocol fields;
so it is necessary to devise a strategy to reduce the
number of possible malformed PDUs to generate, while
still detecting security issues accurately. This can be
achieved by exploiting the knowledge of communication
experts to distinguish the test cases which could be really
interesting, from the ones that are redundant and maybe
even duplicated. The approach we are proposing is used
to generate individual malformed PDUs or sequences of
them in a systematic manner according to a specific
grammar definition. Grammars define a set of syntactic
and semantic rules to cover a specific domain of tests
(generally related to a specific communicational protocol
header); if the protocol implementation cannot handle
invalid packets correctly, anomalous behaviour may occur
and needs to be detected.

The approach, we are proposing, must be generic
enough to be applied to all protocols even to industrial
ones which exhibit really specific properties and features.

ANALYZED TOOLS AND
SECURITY STANDARDS

In the recent years the increasing number of cyber
security related incidents affecting industrial control
systems has made vendors of critical infrastructure to pay
more attention to security issues. Unfortunately, there are
no complete and comprehensive standards whose
specifications can be followed to protect any critical
system; nonetheless several initiatives have been started
with the objective of improving the security level and the
robustness of industrial systems.

The ISA Secure Program [7], on the basis of ISA 99
Standards specifications, has produced a certification
program with three levels of recognition for a device
security assurance.

Among the commercial products - that we have already
tested and used in our initial testing phase - Wurldtech
Achilles [8] must be mentioned; it is an all-in-one
vulnerability scanner specifically designed for suppliers
of industrial process automation, control and safety
systems such as: Programmable Logic Controllers,
Supervisory Control and Data Acquisition (SCADA)
Devices, Distributed Control Systems and Critical
Systems. Wurldtech has also developed a proprietary
certification with the purpose of evaluating and assuring
the robustness and resilience of industrial products.
However, to overcome the Achilles platform’s proprietary
aspects and limitations in terms of supported network
protocols and attack techniques customization support, we
have designed and implemented the TRoIE test-bench [4].
Moreover Wurldtech Inc. is also providing a valuable
contribution to the preparation of industrial cyber security
standards, such as ISA99.

In the wide range of open-source security frameworks
and tools we have integrated into our test-bench the Open
Vulnerability Assessment System [9] (OpenVAS); born
as a branch of the popular Nessus2, OpenVAS provides a
flexible environment for the development and deployment
of new vulnerability scanning techniques. So far this
framework does not offer a real wide range of tests
developed specifically for industrial and process control
environments. This field has been attracting more and
more interest in the last few years: for instance, the
Nessus vulnerability scanner has recently introduced an
internal package finalized to industrial protocols and
systems tests.

ENHANCED PROTOCOL FUZZING
TESTS WITH GRAMMAR DEFINITION

When assessing the cyber security robustness of
devices, attack patterns [10] can be used to categorize the
discovered vulnerabilities. An attack pattern is expressed
as “a series of repeatable steps simulating an attack
against a system”.

Such classification is useful to identify the cause of
vulnerability and the potentially related well-known
solution. In our experience we focused on Fuzzing and
Grammar tests because of their effectiveness at probing
devices for security vulnerabilities.

Protocol Fuzzing is a very effective testing technique
generally deployed to generate valid and invalid packets
with “randomized” header field values; its main purpose
is analyzing the behaviour of a specific protocol
implementation or functions of the protocol stack by
injecting unexpectedly malformed input parameters
values.

Fuzzing, according to the first, narrower definition,
might be characterized as a blind fishing expedition that
hopes to uncover completely unsuspected problems in the
software under test. However it must be also admitted that
for many interfaces, the idea of simply injecting random
bits works poorly generally because of the wide domain
of test. For example, injecting a web interface with
randomly generated strings will have the only effect to
detect only invalid URLs: they will be mainly rejected
suddenly, perhaps by a simple parser - acting a sort of
protection - checking for valid URLs. This is why
completely random fuzzing is a comparatively ineffective
way to uncover problems in a generic system. On the
contrary Fuzzing acquires more efficiency when it is
combined with “intelligent” techniques. Microsoft refers
to this as “smart fuzzing” [11]: it is not a random testing
anymore, but the generation of the tests is led by the
target specifications; hence an initial knowledge of the
system under test is required. In our case the fuzzing
system is fed with some grammar rules which specify the
part of the protocol headers to fuzz and the strategy we
want to follow for the generation of the injected packets.
One of the most important benefits coming from this kind
of testing strategy is the ability to systematically and

Proceedings of ICALEPCS2011, Grenoble, France WEPMU029

Protection and safety systems 1131 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

predictably explore the input space, instead of having to
rely on randomly generated noise.

Our final strategy is a mix of fuzzing and syntax
testing: syntax is used to translate the knowledge of
security experts into rules, which determine the packets
generation and injection. In any case, the creation of
effective syntax tests requires a deep understanding of the
multiple protocols under test and their possibly stateful
interconnections.

A PROTOCOL FUZZING SYSTEM
IMPLEMENTATION

In the initial phase of the project, we analyzed a wide
range of available specialized fuzzing utilities. Some of
them exhaustively iterate through a designated protocol,
whose specification are known in advance; so they could
be used to stress test a variety of applications that support
that protocol. We then opted for other generic fuzzers
capable of fuzzing arbitrary protocols and file formats by
performing simple, in principle non-protocol-aware, data
mutations such as bit flipping or byte transposing.
Although these fuzzers are effective against a wide range
of common applications, we often have a need for more
customization and thorough fuzzing for proprietary and
previously untested protocols (we remind that our main
targets are industrial control devices with proprietary
specifications). This is where fuzzing frameworks become
extremely useful. Among them we explored three open
source fuzzing frameworks: SPIKE, Sulley Fuzzing
Framework and Peach. Eventually the last framework has
been selected for its flexibility and simplicity at
developing specific customized protocols fuzzing tests.
Nonetheless Peach provides some utility to convert
Wireshark captured network traffic file into its protocol
model format. It also includes several modules for target
faults detections; but unfortunately they cannot be used in
our scenarios where a custom monitoring system has been
developed to observe the behaviour of the industrial
devices under tests.

Peach Fuzzing framework [12] is an open source cross-
platform fuzzing framework written in Python. It
provides with a well designed software components, like
mutators, transformers, protocols definitions, publishers,
groups, etc... These components can be extended and
chained together to simplify the generation of customized
complex data types. As underlined before, Peach offers a
very high object oriented abstraction level through the
definition of pure python classes: it allows a tester to
focus on the individual subcomponents of a given
protocol, later tying them together to create a complete
fuzzer scheme. As a result this approach generously
promotes the code reuse for the development of new
fuzzers. We have customized this framework by defining:
 new publishers tailored at injecting the generated

data into the specific protocol formats we want to
test;

 new mutators responsible for the generation of data
ranging values and types;

 new transformers to encode the data values in a
proper way;

 new mutation strategies which establish the
algorithm to follow at combining the protocol fields
values;

 new agents and monitors to integrate the fuzzing
system with the external monitoring one: in case of
target failure detection the fuzzing test saves its
current state to restart it later from the last point.

Once the framework has been customized through the

implementation of the previously described components,
we have started the creation of so called “PeachPit” files:
they are XML files containing all of the information
necessary to run a fuzzing test:
 the data model defines the structure, information

type, and relationships in the data to be fuzzed;
 the state model: It additionally allows for the

configuration of a fuzzing run including selecting a
data transport (Publisher), logging interface, etc.

 Generic configuration to specify the publishers,
agents and monitors to use, including their specific
initial parameters values.

In line with the ISA-99 security standards

specifications we have defined an independent testing and
certification system for industrial control devices. The
PeachPit file definition is not totally arbitrary, but aims at
fulfilling the ISCI Communication Robustness Testing
(CRT) requirements. In practises we have implemented
within the Peach fuzzing framework a list of security tests
classified by protocol and scope of test. However it must
be said that this certification does not cover the industrial
protocols yet; so, to overcome this limitation, we have
defined our own tests by applying the same security
concepts and guidelines used for the open protocols.

MONITORING

In any testing procedure it is essential for the tester to
be able to determine if the behaviour of the system under
test is symptomatic of vulnerability or anomalies either in
the software or hardware.

This examination can be harder in security testing than
in traditional functional testing, because the tester is not
necessarily comparing actual program behaviour to
expectations derived from specifications. Rather, the
tester is often looking for unspecified symptoms
indicating the presence of unsuspected vulnerabilities.
Furthermore monitoring must be integrated into several
automated procedures, which can be used to evaluate test
outcomes and identify only the anomalous ones: this is
especially true during high-volume test activities like
fuzzing. Unfortunately there are no third-party test
automation tools able to monitor generic industrial
devices’ outputs and internal behaviour; so we have been
forced to design and implement our own monitoring
strategy. At least the “essential services” - following the
ISCI CRT [6] naming convention - must be observed

WEPMU029 Proceedings of ICALEPCS2011, Grenoble, France

1132C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Protection and safety systems

during the testing activities. In our specific case the
monitoring system should check and track any of the
following effects: extension of the current PLCs scan
cycle, excessive use of memory, CPU overuse, delays in
the physical outputs and consistent delays in the periodic
communication.

Once an anomaly has been detected, it becomes
relevant to identify its cause, the specific packet or
sequence of packets. Because of its complexity it is not
generally easy to achieve this task: one anomaly could be
the result of different environment variables, and the
device’s behaviour could not be affected by the single
factors, but only by a specific combination of them.

ACHIEVEMENTS

The described strategy has already proven to be
effective at detecting device robustness issues. Thanks to
the performed testing analysis, it was possible to detect
critical anomalies in the devices’ software protocol stack
implementations. These research findings have been
directly reported to their proper industrial vendors in
order to be patched and incorporated in subsequent
firmware releases. These initial encouraging results have
motivated the team to continue following and expanding
this approach for the future of the collaboration between
CERN and the automation industry.

CONCLUSIONS AND FUTURE WORK

The entire article is based on the assumption that any
network protocol implementation is susceptible to
accidental or malicious corrupted communication. For
this reason, it is essential to perform robustness testing of
these implementations for critical industrial systems. Our
approach consists of analyzing protocol implementations
by injecting malformed PDUs to corrupt the normal
behaviour of the system. As a PDU typically has many
fields, the number of possible syntactically faulty PDUs
grows exponentially with the number of fields. In this
document, we proposed a strategy to explore this huge
test domain using a hybrid approach of fuzzing and
syntax techniques, specifically developed to evaluate
industrial device communication robustness. So far, not
all the tests can be integrated into automatic tools, human

analysis and management is necessary to discover and
investigate specific possible failures.

Moreover it should be remembered that security
analysis must be seen as a dynamic process which should
be adapted according to new requirements, constraints
and technological changes. So the testing techniques and
methodologies defined in this document should be
adapted and modified to fit incoming features and
evaluate new functionality.
In the future, we will extend the scope of our analysis to
the industrial supervision layer: the targets of our tests
will not only be the individual devices but also SCADA
systems in order to estimate the potential impact of
malicious PDUs within the entire industrial network
architecture.

REFERENCES
[1] ISA-99: Manufacturing and Control Systems

Security, http://www.isa.org
[2] CAPEC (Common Attack Pattern Enumeration and

Classification), http://capec.mitre.org
[3] F. Tilaro, “Test-bench for Robustness...“, CERN,

2009
[4] B. Copy, F. Tilaro “Standards based measurable

security for embedded devices”, ICALEPCS 2009
[5] Stuxnet,

http://www.langner.com/en/2011/08/04/stuxnet-and-
beresford/

[6] A. Tanenbaum “Computer Networks”, Prentice Hall
2000

[7] ISA Secure Program, http://www.isasecure.org/
[8] Achilles Satellite Security & Robustness Testing

Platform, http://www.wurldtech.com/cyber-security-
products/achilles-satellite/default.aspx

[9] Open Vulnerability Assessment System
(OpenVAS), http://www.openvas.org/

[10] F. Tilaro, B. Copy “Guidelines for evaluating PLC
security”, CERN, 2010

[11] Howard, Michael & Lipner, Steve. The Security
Development Lifecycle. Redmond, WA: Microsoft
Press, 2006

[12] Peach Fuzzing Platform, http://peachfuzzer.com/

Proceedings of ICALEPCS2011, Grenoble, France WEPMU029

Protection and safety systems 1133 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

