
BACKWARD COMPATIBILITY AS A KEY MEASURE FOR SMOOTH
UPGRADES TO THE LHC CONTROL SYSTEM

V. Baggiolini, D. Csikos, P. Tarasenko, Z. Zaharieva, M. Arruat, R. Gorbosonov,
CERN, Geneva, Switzerland

Abstract

It is a big challenge to smoothly upgrade the control
system of a large operational accelerator such as the LHC
without causing unnecessary downtime. We have
identified backward compatibility as a key measure to
achieve this, because a backward compatible component
can be easily upgraded. This document describes the work
the CERN Accelerator Controls group does to provide
methods and tools supporting backward compatibility.

BACKGROUND
Now that the LHC is operational, we from the controls

group get requests from the operations team, which
require a high degree of versatility. On one hand, the
stability of the control system is necessary to ensure
smooth operations while on the other hand, a certain
amount of flexibility should be available in order to
develop and deploy bug fixes and new functionality. To
cope with these requirements, we are making a
continuous investment in the quality assurance of our
software, to improve the development process [1] and to
provide new tools [2]. The work described in this
document belongs into this context.

The CERN accelerator control system is highly
complex, modular and distributed. The software part is
structured as a three-tier system. GUIs at the top layer are
written in Java and run on Linux consoles in the control
room; the business layer in the middle is also written in
Java but runs on powerful Linux servers in the computer
center; the equipment control software at the lowest layer
is written in C/C++ and runs on front-end computers with
real-time-enhanced Linux and LynxOS. The Java part of
the control system is composed of roughly 1000 Jar files,
which are combined to around 400 different GUIs and
150 different server programs, which are deployed as over
600 processes on 400 machines. The C/C++ part on the
front-end computers is represented by around 550
different device types (FESA [3] and legacy GM classes),
deployed as over 70’000 device instances on 800 front-
end computers. The development of all these components
is done by more than 130 developers in 50 different
teams. The development and collaboration is organized in
a pragmatic and informal manner, with very low
administrative overhead. Developers essentially
collaborate along the dependencies of their software. If
two components depend on each other, the respective
developers will coordinate their work as needed. Even
though there is no strong centralized organization to
coordinate all upgrades done by the different teams, this
form of collaboration is very efficient and agile.
However, there are certain shortcomings as developers

are not always aware of all the other components that
depend on theirs, and consequently they may fail to fully
coordinate their work with everyone. Therefore, an
upgrade may result in down time to the LHC.

THE DEVELOPER’S VIEW
Let us examine the problem from the perspective of an

experienced developer, who needs to modify a widely
used library, which possibly requires changes in the
signature of an API method.

Let us examine the steps this developer will follow. As
a first step, he* will decide if he may modify the API
method or not. He will try to understand if some other
component uses that method, i.e., he will examine number
and origin of incoming dependencies. There are three
possible cases: there are no incoming dependencies, just a
few of them, or many. In the first and the last cases, the
situation is clear. If there are no incoming dependencies,
then he can freely modify the method, because he has no
backward compatibility constraints. If there are many
incoming dependencies from many client components,
then he cannot change the method signature; he must
modify his library in some backward compatible way.

If there are just a few incoming dependencies from one
or two client components, the developer can chose
between two approaches: He can either accept backward
compatibility constraints or he can break backward
compatibility. The two solutions have opposite
advantages and disadvantages. In the first case, staying
backward compatible makes development more difficult
but deployment easier. Backward compatibility
constraints (keeping the old method signature) typically
lead to sub-optimal solutions with more code to maintain.
Also, the developer has to validate that the change is
really backward compatible, which might be difficult.
Deployment is easier because a backward compatible
component can be deployed anywhere without breaking
any dependent clients. Deployment can be done
selectively, starting with those systems that really need
the new functionality, and deferring upgrades of the other
systems until the upgrade has been validated. There is no
need for wide coordination or big-bang changes.

In the second case, advantages and disadvantages are
inverted: breaking backward compatibility makes
development easier but deployment more difficult. The
developer has no backward compatibility constraints, and
can choose the best solution, which generally leads to
cleaner results and less maintenance. However, careful

*
 This article uses the masculine pronoun ‘he’ for brevity, but intends

‘he or she’

Proceedings of ICALEPCS2011, Grenoble, France WEPMS007

Quality assurance 989 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

coordination is needed with other developers responsible
for dependent components. They must change their
source code to adapt to the new API and re-build and re-
test their components. And then, new versions of all
components must be deployed at the same time. There are
two issues with that: firstly, all this can be difficult to
organize, and secondly, the other developers will be
unhappy if they need to adapt, rebuild, re-test and re-
deploy their client components too often.

The above description admits that our developer has a
clearly defined API and that his clients respect this API.
Reality though might be different. The developer may not
have clearly specified which classes and methods belong
to the API, and the clients may disregard the official API
and use additional (non-API) classes contained elsewhere
in the software component. As a consequence, with an
insufficiently specified and enforced API, our developer
has to take the precautions above for each and every
public method he might want to change.

TOOLS TO SUPPORT SMOOTH
UPGRADES

The description above illustrates that upgrading a
widely used component is a challenging development task
that must be supported by good tools. We have identified
four areas for which we want to provide tools: (1)
dependency analysis to identify incoming dependencies,
(2) backward compatibility validation to verify that API
changes are really backward compatible, (3) versioning
with rules to clearly inform the dependent clients if a
modification is backward compatible, and (4) API
consolidation to clearly specify classes and methods
belonging to the API and to enforce their appropriate
usage.

The following subsections discuss each of these areas,
by first presenting existing approaches and tools and then
motivating and explaining own developments we did.

Tools to Analyze Incoming Dependencies
Our developer wants to know about incoming

dependencies right from inside his IDE. For example, he
wants to right-click on a given method and execute a
command “show incoming dependencies”. As a result, he
expects to get a list of client libraries that use the selected
method, with the possibility to navigate to the client
source code from where the selected method is invoked.

Most IDEs provide very similar functionality, namely
to show the call hierarchy of a method within a given
project. However, this functionally only reveals incoming
dependencies from within the source code and
components (Jar files) present in the IDE. It does not
show incoming dependencies from external Jar files.
Also, it does not take into account previous versions of
components that are deployed in operations, but only
shows dependencies between the latest snapshot of the
source files.

There exist stand-alone tools capable of analyzing
dependencies between a large set of Jars, such as

Tattletale [4] and JDepend [5]. They produce a lot of
useful information, but they analyze dependencies only at
the class level, not at the method or field level as we need.

Therefore, we decided to develop our own tool which is
based on a client-server architecture. The server creates a
list of all the roughly 1000 Jar files running in production
and analyses the byte code of all classes they contain
using the Apache Commons Byte Code Engineering
Library BCEL [6]. It collects information about method
and field-level accesses from one Jar file to another. The
dependency information is stored in a database, and made
accessible to the client over a remote RMI call. The client
is an Eclipse plug-in with the right-click-on-method
functionality described above. The analysis is carried out
every 20 minutes and takes roughly a minute to run.

Tools for Assessing Backward Compatibility
Our developer also needs tools which help him ensure

that modifications he made are really backward
compatible. Ideally, backward compatibility is verified
early on, during development, warning the developer as
soon as he breaks backward compatibility. We first
concentrated on tools to assess binary backward
compatibility for Java. After all, the goal is to deploy a
new version of a component (a Jar file) without even
recompiling the client code. The Java Language
Specification [7] contains clear rules to guarantee binary
backward compatibility.

The “PDE API tools” [8] contained in the Eclipse IDE
provide exactly this functionality. They assess backward
compatibility of a project in the IDE by comparing it with
a previous version of the same project. Once this
functionality is activated and properly configured, the
IDE gives immediate feedback and warnings about
backward compatibility violations to the developer.
Although this looks like a perfect fit to our needs, there
are two issues to overcome. Firstly, PDE API tools (and
Eclipse as a whole) use OSGi [9] to declare the public
API packages. So far, we do not use OSGi, and
introducing OSGi into a software development process is
a big decision, which should not be driven only by the
needs of one tool. Secondly, a considerable amount of
manual configuration is required to properly configure the
PDE API tools. We would have to automate this because
we cannot expect our developers to do it manually.
Therefore, we will need to weigh the benefit of using this
tool against the overhead just described.

Of course, comparing the API signatures of different
versions is only the first step for checking backward
compatibility. It can be considered as a sort of early-
warning system for the developer while he modifies his
code. To validate backward compatibility further, we rely
on other means, such as function tests and our Continuous
Integration server. We also validate the core elements of
the control system in the Controls Testbed [2], which
carries out function and integration tests. In the future, we
might also explore more formal approaches to augment
the API specification, such as Design by Contract [10].

WEPMS007 Proceedings of ICALEPCS2011, Grenoble, France

990C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

Versioning Schemes and Related Tools
Once our developer has finished the modifications to

his component, he has to increase the version number. All
the Java components in the accelerator control system are
versioned using a scheme with three numbers separated
by dots (x.y.z), which are called major, minor and micro
(major.minor.micro). Semantic versioning [11] assigns a
meaning to each of these numbers: if the developer did a
(backward compatible) bugfix, he increases the micro
number, if he added functionality but the overall change
is still backward compatible, he increases the minor
number, and if he breaks backward compatibility, he
increases the major number. If the developer uses
semantic versioning, the clients can simply infer the
impact of the change from the change in version number.
A typical client will automatically accept new versions of
a library if only the minor or micro numbers have
changed.

We want to start using semantic versioning, and back it
up with tools that automatically calculate the new version
based on the changes made to the code. We have
identified two tools providing such functionality: PDE
API tools and a semantic versioning plug-in for Maven
[12].

Tools to Specifying and Enforce APIs
To fully define a Java API, our developer must be able

to specify the packages that contain API classes. In
addition, he may add further constraints, e.g. to indicate
that clients are allowed to use a given public interface
(invoke its methods) but not to extend it.

Once an API is specified, it must be enforced, e.g.
clients must be prevented from using non-API classes.
Standard Java does not provide sufficient mechanisms for
this purpose. Therefore, PDE-API tools use OSGi to
specify and enforce access to API packages, and Javadoc
tags to specify further API constraints. For example, the
@noimplement tag indicates that an interface can be used
but should not be implemented in client code.

A completely different approach is based on static
crosscutting functionality provided by AspectJ [13]. The
‘declare warning’ construct of AspectJ makes it possible
to issue warnings for illegal method access, e.g. a client
accessing non-API methods. These checks are executed at
compile-time, and simply require the AspectJ compiler
and weaver to be executed as part of the build process.

APPLYING THE SAME CONCEPTS TO
C++ CODE AND FESA DEVICES

So far, this document has only discussed Java software.
The other languages we use are C and C++. We started
with Java because this is the area where we need to
achieve smooth upgrades first, and because Java provides
many mechanisms and tools for what we want to do.
Once we have a clear idea about our needs and feedback
from developers, we intend to provide similar tools for
C/C++.

But already now, we try to use backward compatibility
concepts for the low-level software that integrates the
hardware devices into the accelerator control system. As
for Java, we need to provide guidelines and tools enabling
the device developers to achieve smooth upgrades.

All our devices follow the device/property model,
which means that a device class has properties (e.g. a
Magnet has a Current property, or a Motor has a Position
property). The public API of a device class is represented
by the properties it exposes to its clients.

Device developers modify the public API from time to
time, to make bug-fixes or to introduce new functionality.
As for the Java libraries, these modifications can be
backward compatible or not. For instance, adding a new
property to a device class is a backward compatible
modification, whereas renaming an existing property
breaks backward compatibility.

Currently the versioning of FESA devices is slightly
different from versioning Java software. FESA device
classes do have a version, but the device developer is
expected to increase it only if his modifications break
backward compatibility. He can keep the version
unchanged if his modifications are backward compatible.
Whenever the version is increased, client code accessing
the devices must be re-configured or even re-released to
use the new version of the FESA class. If the version is
unchanged, the modified FESA device just replaces the
old one operationally as soon as it is deployed.

With the current FESA tools, the developer is only
expected to increase the version when he breaks backward
compatibility, but not forced to do so. This has
occasionally lead to problems in the past. Developers
have made non-backward compatible modifications to
their FESA device/property API without increasing the
version number. After the deployment of these devices,
some important client applications stopped working
because they relied on the old API, and LHC operations
were affected.

We are now improving the development process and
tools for FESA development based on the same concepts
as described above for Java software development. The
following paragraphs shall explain this in more detail.

A FESA developer, who needs to make a modification
to his device, carries out the same steps as the Java
developer discussed earlier. He first analyzes the
incoming dependencies to the device property he might
want to change. He then decides whether to stay
backward compatible or not. In case he remains backward
compatible, he needs tools to validate backward
compatibility, and so on.

Regarding the tools, we are developing means to assess
incoming dependencies to the device properties of FESA
classes. This work is largely based on the Controls
Configuration Database (CCDB) [14], which contains the
configuration data for all device classes, their properties
and devices. It also contains configuration of the most
important client applications that use the FESA devices,
such as LSA and InCA [15]. Thus, the accelerators
controls system is to a large extent data-driven and the

Proceedings of ICALEPCS2011, Grenoble, France WEPMS007

Quality assurance 991 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

challenge is to ensure that a coherent set of configuration
data is used throughout the controls system. To achieve
that, we have established a strategy with several steps.
First of all we need to clearly specify the visibility of the
configuration data. Previously all data – data necessary
for the operation of the accelerators and data used by
equipment experts for low-level device control – was
exposed to everyone through public APIs. Now the
approach has changed and the data for the FESA classes
is divided into a public API used for operations and a
private API used only by equipment experts. Another
important aspect is that the CCDB needs to have feedback
of who uses what from the public API, in order to ensure
that only backward compatible changes are made. This
feedback allows us to find out which device properties are
used in operations, i.e., determine the incoming
dependencies for a given device property.

However, not all clients of FESA devices propagate
feedback to the CCDB regarding the device properties
they use. We have important systems that use
configuration files or other means to specify the device
and properties they need, e.g. the Software Interlock
System [16] or the Post Mortem Analysis system [17].
We are currently examining methods to dynamically
harvest information about device property usage for all
Java client applications. For this purpose, we have
instrumented the JAPC communication library [18],
which is used for nearly all device access from Java.
JAPC dynamically tracks the device properties that were
accessed and periodically uploads this information to the
CCDB.

Validation of backward compatibility during
development is done by the newest FESA development
tools, which compare the previous version of the public
device/property API of a FESA class with the one under
development. If the FESA tool detects a change that is not
backward compatible, it forces the developer to increase
the version number according to the semantic versioning
rules. This should prevent the problems described earlier
in this section.

Finally - unlike Java - FESA does not need additional
tools to specify and enforce the public APIs, because this
is already covered very well by the existing FESA tools.

CONCLUSIONS
We need to upgrade the LHC controls system without

causing any unnecessary down time. Backward
compatible changes are a means of achieving this. The
same concepts of backward compatibility apply to Java
software and to FESA devices. In both cases, making
backward compatible changes is challenging, and
developers need to be supported by good tools. We have
identified some promising approaches and tools, and we
know how we want to apply them. We are evaluating the
different alternatives and have started implementing our
own tools where third party solutions are missing or
insufficient. This is a non-negligible investment, but we

are convinced that it will pay off, by making our work
easier and the LHC operations more reliable.

REFERENCES
[1] K. Sigerud et al., “The Software Improvement

Process – Tools and Rules to Encourage Quality”,
Proceedings of ICALEPCS’11, Grenoble, France.

[2] N. Stapley et al., “An integration testing facility for
the CERN accelerator controls system”, Proceedings
of ICALEPCS’09, Kobe, Japan.

[3] M. Arruat et al., “Front-End Software Architecture”,
Proceedings of ICALEPCS’07, Knoxville,
Tennessee.

[4] Tattletale, http://www.jboss.org/tattletale
[5] JDepend,

http://clarkware.com/software/JDepend.html
[6] Apache Commons Byte Code Engineering Library,

http://commons.apache.org/bcel/
[7] J. Gosling et al., “The Java Language Specification,

Third Edition", Addision Wesley 2005,
http://java.sun.com/docs/books/jls/download/langspe
c-3.0.pdf

[8] PDE API tools, the Eclipse Foundation,
http://www.eclipse.org/pde/pde-api-tools/

[9] OSGi™, the Dynamic Module System for Java,
http://www.osgi.org/

[10] Design by Contract, http://en.wikipedia.org/wiki/
Design_by_contract

[11] Semantic versioning, http://semver.org
[12] Semantic versioning plugin for Maven

https://github.com/jeluard/semantic-versioning
[13] R. Laddad, “AspectJ in Action”, Manning 2010.

http://www.manning.com/laddad/
[14] Z. Zaharieva et al., “Database Foundation for the

Configuration Management of the CERN Accelerator
Controls Systems”, ICALEPCS 2011, Grenoble,
France.

[15] S. Deghaye et al., “CERN Proton Synchrotron
Complex High-Level Controls Renovation”,
Proceedings of ICALEPCS’09, Kobe, Japan.

[16] J. Wozniak et al., “Software Interlock System”,
Proceedings of ICALEPCS’07, Knoxville, USA.

[17] M. Zerlauth et al., “The LHC Postmortem Analysis
Framework”, Proceedings of ICALEPCS’09, Kobe,
Japan.

[18] V. Baggiolini et al., “JAPC - the Java API for
Parameter Control”, ICALEPCS’05, Geneva,
Switzerland.

WEPMS007 Proceedings of ICALEPCS2011, Grenoble, France

992C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

