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Abstract 

It is a big challenge to smoothly upgrade the control 
system of a large operational accelerator such as the LHC 
without causing unnecessary downtime. We have 
identified backward compatibility as a key measure to 
achieve this, because a backward compatible component 
can be easily upgraded. This document describes the work 
the CERN Accelerator Controls group does to provide 
methods and tools supporting backward compatibility.  

BACKGROUND 
Now that the LHC is operational, we from the controls 

group get requests from the operations team, which 
require a high degree of versatility. On one hand, the 
stability of the control system is necessary to ensure 
smooth operations while on the other hand, a certain 
amount of flexibility should be available in order to 
develop and deploy bug fixes and new functionality. To 
cope with these requirements, we are making a 
continuous investment in the quality assurance of our 
software, to improve the development process [1] and to 
provide new tools [2]. The work described in this 
document belongs into this context. 

The CERN accelerator control system is highly 
complex, modular and distributed. The software part is 
structured as a three-tier system. GUIs at the top layer are 
written in Java and run on Linux consoles in the control 
room; the business layer in the middle is also written in 
Java but runs on powerful Linux servers in the computer 
center; the equipment control software at the lowest layer 
is written in C/C++ and runs on front-end computers with 
real-time-enhanced Linux and LynxOS. The Java part of 
the control system is composed of roughly 1000 Jar files, 
which are combined to around 400 different GUIs and 
150 different server programs, which are deployed as over 
600 processes on 400 machines. The C/C++ part on the 
front-end computers is represented by around 550 
different device types (FESA [3] and legacy GM classes), 
deployed as over 70’000 device instances on 800 front-
end computers. The development of all these components 
is done by more than 130 developers in 50 different 
teams. The development and collaboration is organized in 
a pragmatic and informal manner, with very low 
administrative overhead. Developers essentially 
collaborate along the dependencies of their software. If 
two components depend on each other, the respective 
developers will coordinate their work as needed. Even 
though there is no strong centralized organization to 
coordinate all upgrades done by the different teams, this 
form of collaboration is very efficient and agile. 
However, there are certain shortcomings as developers 

are not always aware of all the other components that 
depend on theirs, and consequently they may fail to fully 
coordinate their work with everyone. Therefore, an 
upgrade may result in down time to the LHC. 

THE DEVELOPER’S VIEW 
Let us examine the problem from the perspective of an 

experienced developer, who needs to modify a widely 
used library, which possibly requires changes in the 
signature of an API method. 

Let us examine the steps this developer will follow. As 
a first step, he* will decide if he may modify the API 
method or not. He will try to understand if some other 
component uses that method, i.e., he will examine number 
and origin of incoming dependencies. There are three 
possible cases: there are no incoming dependencies, just a 
few of them, or many. In the first and the last cases, the 
situation is clear. If there are no incoming dependencies, 
then he can freely modify the method, because he has no 
backward compatibility constraints. If there are many 
incoming dependencies from many client components, 
then he cannot change the method signature; he must 
modify his library in some backward compatible way.  

If there are just a few incoming dependencies from one 
or two client components, the developer can chose 
between two approaches: He can either accept backward 
compatibility constraints or he can break backward 
compatibility. The two solutions have opposite 
advantages and disadvantages. In the first case, staying 
backward compatible makes development more difficult 
but deployment easier. Backward compatibility 
constraints (keeping the old method signature) typically 
lead to sub-optimal solutions with more code to maintain. 
Also, the developer has to validate that the change is 
really backward compatible, which might be difficult. 
Deployment is easier because a backward compatible 
component can be deployed anywhere without breaking 
any dependent clients. Deployment can be done 
selectively, starting with those systems that really need 
the new functionality, and deferring upgrades of the other 
systems until the upgrade has been validated. There is no 
need for wide coordination or big-bang changes.  

In the second case, advantages and disadvantages are 
inverted: breaking backward compatibility makes 
development easier but deployment more difficult. The 
developer has no backward compatibility constraints, and 
can choose the best solution, which generally leads to 
cleaner results and less maintenance. However, careful 
                                                        
*
 This article uses the masculine pronoun ‘he’ for brevity, but intends 

‘he or she’  
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coordination is needed with other developers responsible 
for dependent components. They must change their 
source code to adapt to the new API and re-build and re-
test their components. And then, new versions of all 
components must be deployed at the same time. There are 
two issues with that: firstly, all this can be difficult to 
organize, and secondly, the other developers will be 
unhappy if they need to adapt, rebuild, re-test and re-
deploy their client components too often. 

The above description admits that our developer has a 
clearly defined API and that his clients respect this API. 
Reality though might be different. The developer may not 
have clearly specified which classes and methods belong 
to the API, and the clients may disregard the official API 
and use additional (non-API) classes contained elsewhere 
in the software component. As a consequence, with an 
insufficiently specified and enforced API, our developer 
has to take the precautions above for each and every 
public method he might want to change.  

TOOLS TO SUPPORT SMOOTH 
UPGRADES 

The description above illustrates that upgrading a 
widely used component is a challenging development task 
that must be supported by good tools. We have identified 
four areas for which we want to provide tools: (1) 
dependency analysis to identify incoming dependencies, 
(2) backward compatibility validation to verify that API 
changes are really backward compatible, (3) versioning 
with rules to clearly inform the dependent clients if a 
modification is backward compatible, and (4) API 
consolidation to clearly specify classes and methods 
belonging to the API and to enforce their appropriate 
usage.  

The following subsections discuss each of these areas, 
by first presenting existing approaches and tools and then 
motivating and explaining own developments we did. 

Tools to Analyze Incoming Dependencies 
Our developer wants to know about incoming 

dependencies right from inside his IDE. For example, he 
wants to right-click on a given method and execute a 
command “show incoming dependencies”. As a result, he 
expects to get a list of client libraries that use the selected 
method, with the possibility to navigate to the client 
source code from where the selected method is invoked.  

Most IDEs provide very similar functionality, namely 
to show the call hierarchy of a method within a given 
project. However, this functionally only reveals incoming 
dependencies from within the source code and 
components (Jar files) present in the IDE. It does not 
show incoming dependencies from external Jar files. 
Also, it does not take into account previous versions of 
components that are deployed in operations, but only 
shows dependencies between the latest snapshot of the 
source files.  

There exist stand-alone tools capable of analyzing 
dependencies between a large set of Jars, such as 

Tattletale [4] and JDepend [5]. They produce a lot of 
useful information, but they analyze dependencies only at 
the class level, not at the method or field level as we need.  

Therefore, we decided to develop our own tool which is 
based on a client-server architecture. The server creates a 
list of all the roughly 1000 Jar files running in production 
and analyses the byte code of all classes they contain 
using the Apache Commons Byte Code Engineering 
Library BCEL [6]. It collects information about method 
and field-level accesses from one Jar file to another. The 
dependency information is stored in a database, and made 
accessible to the client over a remote RMI call. The client 
is an Eclipse plug-in with the right-click-on-method 
functionality described above. The analysis is carried out 
every 20 minutes and takes roughly a minute to run. 

Tools for Assessing Backward Compatibility 
Our developer also needs tools which help him ensure 

that modifications he made are really backward 
compatible. Ideally, backward compatibility is verified 
early on, during development, warning the developer as 
soon as he breaks backward compatibility. We first 
concentrated on tools to assess binary backward 
compatibility for Java. After all, the goal is to deploy a 
new version of a component (a Jar file) without even 
recompiling the client code. The Java Language 
Specification [7] contains clear rules to guarantee binary 
backward compatibility.  

The “PDE API tools” [8] contained in the Eclipse IDE 
provide exactly this functionality. They assess backward 
compatibility of a project in the IDE by comparing it with 
a previous version of the same project. Once this 
functionality is activated and properly configured, the 
IDE gives immediate feedback and warnings about 
backward compatibility violations to the developer. 
Although this looks like a perfect fit to our needs, there 
are two issues to overcome. Firstly, PDE API tools (and 
Eclipse as a whole) use OSGi [9] to declare the public 
API packages. So far, we do not use OSGi, and 
introducing OSGi into a software development process is 
a big decision, which should not be driven only by the 
needs of one tool. Secondly, a considerable amount of 
manual configuration is required to properly configure the 
PDE API tools. We would have to automate this because 
we cannot expect our developers to do it manually. 
Therefore, we will need to weigh the benefit of using this 
tool against the overhead just described. 

Of course, comparing the API signatures of different 
versions is only the first step for checking backward 
compatibility. It can be considered as a sort of early-
warning system for the developer while he modifies his 
code. To validate backward compatibility further, we rely 
on other means, such as function tests and our Continuous 
Integration server. We also validate the core elements of 
the control system in the Controls Testbed [2], which 
carries out function and integration tests. In the future, we 
might also explore more formal approaches to augment 
the API specification, such as Design by Contract [10].  
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Versioning Schemes and Related Tools 
Once our developer has finished the modifications to 

his component, he has to increase the version number. All 
the Java components in the accelerator control system are 
versioned using a scheme with three numbers separated 
by dots (x.y.z), which are called major, minor and micro 
(major.minor.micro). Semantic versioning [11] assigns a 
meaning to each of these numbers: if the developer did a 
(backward compatible) bugfix, he increases the micro 
number, if he added functionality but the overall change 
is still backward compatible, he increases the minor 
number, and if he breaks backward compatibility, he 
increases the major number. If the developer uses 
semantic versioning, the clients can simply infer the 
impact of the change from the change in version number. 
A typical client will automatically accept new versions of 
a library if only the minor or micro numbers have 
changed.  

We want to start using semantic versioning, and back it 
up with tools that automatically calculate the new version 
based on the changes made to the code. We have 
identified two tools providing such functionality: PDE 
API tools and a semantic versioning plug-in for Maven 
[12]. 

Tools to Specifying and Enforce APIs 
To fully define a Java API, our developer must be able 

to specify the packages that contain API classes. In 
addition, he may add further constraints, e.g. to indicate 
that clients are allowed to use a given public interface 
(invoke its methods) but not to extend it.  

Once an API is specified, it must be enforced, e.g. 
clients must be prevented from using non-API classes. 
Standard Java does not provide sufficient mechanisms for 
this purpose. Therefore, PDE-API tools use OSGi to 
specify and enforce access to API packages, and Javadoc 
tags to specify further API constraints. For example, the 
@noimplement tag indicates that an interface can be used 
but should not be implemented in client code.  

A completely different approach is based on static 
crosscutting functionality provided by AspectJ [13]. The 
‘declare warning’ construct of AspectJ makes it possible 
to issue warnings for illegal method access, e.g. a client 
accessing non-API methods. These checks are executed at 
compile-time, and simply require the AspectJ compiler 
and weaver to be executed as part of the build process. 

APPLYING THE SAME CONCEPTS TO 
C++ CODE AND FESA DEVICES  

So far, this document has only discussed Java software. 
The other languages we use are C and C++. We started 
with Java because this is the area where we need to 
achieve smooth upgrades first, and because Java provides 
many mechanisms and tools for what we want to do. 
Once we have a clear idea about our needs and feedback 
from developers, we intend to provide similar tools for 
C/C++.  

But already now, we try to use backward compatibility 
concepts for the low-level software that integrates the 
hardware devices into the accelerator control system. As 
for Java, we need to provide guidelines and tools enabling 
the device developers to achieve smooth upgrades.  

All our devices follow the device/property model, 
which means that a device class has properties (e.g. a 
Magnet has a Current property, or a Motor has a Position 
property). The public API of a device class is represented 
by the properties it exposes to its clients.  

Device developers modify the public API from time to 
time, to make bug-fixes or to introduce new functionality. 
As for the Java libraries, these modifications can be 
backward compatible or not. For instance, adding a new 
property to a device class is a backward compatible 
modification, whereas renaming an existing property 
breaks backward compatibility.  

Currently the versioning of FESA devices is slightly 
different from versioning Java software. FESA device 
classes do have a version, but the device developer is 
expected to increase it only if his modifications break 
backward compatibility. He can keep the version 
unchanged if his modifications are backward compatible. 
Whenever the version is increased, client code accessing 
the devices must be re-configured or even re-released to 
use the new version of the FESA class. If the version is 
unchanged, the modified FESA device just replaces the 
old one operationally as soon as it is deployed.  

With the current FESA tools, the developer is only 
expected to increase the version when he breaks backward 
compatibility, but not forced to do so. This has 
occasionally lead to problems in the past. Developers 
have made non-backward compatible modifications to 
their FESA device/property API without increasing the 
version number. After the deployment of these devices, 
some important client applications stopped working 
because they relied on the old API, and LHC operations 
were affected.  

We are now improving the development process and 
tools for FESA development based on the same concepts 
as described above for Java software development. The 
following paragraphs shall explain this in more detail. 

A FESA developer, who needs to make a modification 
to his device, carries out the same steps as the Java 
developer discussed earlier. He first analyzes the 
incoming dependencies to the device property he might 
want to change. He then decides whether to stay 
backward compatible or not. In case he remains backward 
compatible, he needs tools to validate backward 
compatibility, and so on. 

Regarding the tools, we are developing means to assess 
incoming dependencies to the device properties of FESA 
classes. This work is largely based on the Controls 
Configuration Database (CCDB) [14], which contains the 
configuration data for all device classes, their properties 
and devices. It also contains configuration of the most 
important client applications that use the FESA devices, 
such as LSA and InCA [15]. Thus, the accelerators 
controls system is to a large extent data-driven and the 
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challenge is to ensure that a coherent set of configuration 
data is used throughout the controls system. To achieve 
that, we have established a strategy with several steps. 
First of all we need to clearly specify the visibility of the 
configuration data. Previously all data – data necessary 
for the operation of the accelerators and data used by 
equipment experts for low-level device control – was 
exposed to everyone through public APIs. Now the 
approach has changed and the data for the FESA classes 
is divided into a public API used for operations and a 
private API used only by equipment experts. Another 
important aspect is that the CCDB needs to have feedback 
of who uses what from the public API, in order to ensure 
that only backward compatible changes are made. This 
feedback allows us to find out which device properties are 
used in operations, i.e., determine the incoming 
dependencies for a given device property.   

However, not all clients of FESA devices propagate 
feedback to the CCDB regarding the device properties 
they use. We have important systems that use 
configuration files or other means to specify the device 
and properties they need, e.g. the Software Interlock 
System [16] or the Post Mortem Analysis system [17]. 
We are currently examining methods to dynamically 
harvest information about device property usage for all 
Java client applications. For this purpose, we have 
instrumented the JAPC communication library [18], 
which is used for nearly all device access from Java. 
JAPC dynamically tracks the device properties that were 
accessed and periodically uploads this information to the 
CCDB.  

Validation of backward compatibility during 
development is done by the newest FESA development 
tools, which compare the previous version of the public 
device/property API of a FESA class with the one under 
development. If the FESA tool detects a change that is not 
backward compatible, it forces the developer to increase 
the version number according to the semantic versioning 
rules. This should prevent the problems described earlier 
in this section. 

Finally - unlike Java - FESA does not need additional 
tools to specify and enforce the public APIs, because this 
is already covered very well by the existing FESA tools.  

CONCLUSIONS 
We need to upgrade the LHC controls system without 

causing any unnecessary down time. Backward 
compatible changes are a means of achieving this. The 
same concepts of backward compatibility apply to Java 
software and to FESA devices. In both cases, making 
backward compatible changes is challenging, and 
developers need to be supported by good tools. We have 
identified some promising approaches and tools, and we 
know how we want to apply them. We are evaluating the 
different alternatives and have started implementing our 
own tools where third party solutions are missing or 
insufficient. This is a non-negligible investment, but we 

are convinced that it will pay off, by making our work 
easier and the LHC operations more reliable. 
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