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Abstract 
The Level-1 Trigger Control and Monitoring System is 

a software package designed to configure, monitor and 
test the Level-1 Trigger System of the Compact Muon 
Solenoid (CMS) experiment at CERN's Large Hadron 
Collider. It is a large and distributed system that runs over 
50 PCs and controls about 200 hardware units. 

The objective of this paper is to describe and evaluate 
the architecture of a distributed testing framework – the 
Interconnection Test Framework (ITF). This generic and 
highly flexible framework for creating and executing 
hardware tests within the Level-1 Trigger environment is 
meant to automate testing of the 13 major subsystems 
interconnected with more than 1000 links. Features 
include a web interface to create and execute tests, 
modeling using finite state machines, dependency 
management, automatic configuration, and loops. 
Furthermore, the ITF will replace the existing 
heterogeneous testing procedures and help reducing both 
maintenance and complexity of operation tasks. 

INTRODUCTION 
The Compact Muon Solenoid (CMS) experiment at the 

Large Hadron Collider (LHC) of CERN, the European 
Organization for Nuclear Research, is a detector designed 
to find answers to some of the fundamental open 
questions in physics today [1]. 

Since millions of collisions of protons occur every 
second and only a small fraction of these can provide 
insight into new physics, events have to be selected on-
line according to their properties. This is done by the 
trigger system, a vital part of the experiment.  

The trigger system is organized in two levels: (1) The 
Level-1 Trigger (L1T) [2] is a custom-designed, largely 
programmable electronic system which preselects the 
most interesting collisions for further evaluation. These 
collisions are then examined and – if selected – stored 
permanently by (2) the High-Level Trigger (HLT) [3], 
which consists of a farm of industrial processors. 

The Trigger Supervisor Framework 
The L1T is configured, tested and monitored using the 

Level-1 Trigger Control and Monitoring System – a large 
and distributed system that runs over 50 PCs and controls 
about 200 hardware units (~ 6000 boards). Each of the 
components of this system is based on the Trigger 
Supervisor (TS) Framework [4], written in C++, 
providing a web interface utilizing AJAX. 

The TS architecture is composed of a hierarchical tree 
of nodes, where the central (i.e. the top) node is in charge 

of coordinating the access to the subsystems [5]. Each 
node is accessible by a well-defined interface based on 
the Simple Object Access Protocol (SOAP) [6], and can 
run one or more commands and operations 
simultaneously. Operations are stateful objects that use 
transitions to move between different states of their 
internal finite state machine (FSM) – which can be 
defined freely. 

The communication hierarchy is strictly top-down – 
following the request-response model – with subsystems 
not even knowing their supervisor nodes. Fig. 1 shows an 
example system setup. 

Need for an Interconnection Test Framework 
With more than 1000 links connecting the about 200 

hardware units, thorough testing is crucial. So far, the 
various subsystems have used custom scripts for testing – 
controlling the TS nodes via SOAP commands. Needless 
to say, this leads to a lot of duplicated effort with a high 
level of maintenance required. Even more important, this 
approach does not allow the centrally controlled 
execution of tests (in particular by non-experts!), nor to 
execute them automatically at specific events. 
 

 

Figure 1: An example Level-1 Trigger system setup. 
 

Instead, local test methodologies heavily rely on the 
respective subsystem experts and time-consuming 
coordination between them and the global run control 
operators. All these factors lead to unnecessary system 
downtime and a waste of precious manpower, both 
undesirable consequences for such a huge experiment 
involving large resources of manpower and investment. 

A much better solution would be to provide an 
interconnection test framework on top of the existing TS 
framework. This could make use of the already available 
infrastructure and facilities, and provide additional 
common functionality for distributed testing. However, 
although the basic idea was already stated in [6], a 
sophisticated implementation was yet to be developed. 
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Requirements and Constraints 
Among the requirements: 
 Main focus on simplicity: The users should need as 

little effort as necessary to use the ITF (simple API, 
little setup/configuration, …). 

 Tests can be run both locally and centrally 
controlled. 

 Tests can be run in different network environments 
(with or without database; with various and even 
fake top nodes, …). 

 Unlimited subsystem hierarchy depth. 
 Shall be very flexible to allow a large range of 

diverse tests (including self-tests). 
Imposed constraints were: 
 Shall be embedded into the existing Trigger 

Supervisor environment, i.e. the tests shall be 
implemented using TS operations. 

 Shall allow both interactive and scripted execution. 

ARCHITECTURE 

Overview 
The Interconnection Test Framework is built on top of 

the Trigger Supervisor Framework, and therefore fully 
embedded into the existing environment. As a result, the 
ITF is highly TS specific, using the available API to 
communicate with subsystems and drive operations. 
Figure 2 shows the basic architecture: 
 

 

Figure 2: The architecture of the Interconnection Test 
Framework. 
 

Each node runs one Interconnection Test operation – a 
sub class of the framework’s base class, with the concrete 
functionality implemented by the user. Any node will 
automatically act as a supervisor once there are sub nodes 
defined for it. 

Which and how many nodes (i.e. systems) are involved 
depends on the test case – essentially an XML document 
– that defines all the necessary details for a specific test 
(e.g. user-defined parameters). 

Service Discovery (ITF-SD) 
Much effort was spent on simplicity. Wherever 

possible, the “convention over configuration” paradigm 

was applied to reduce both the required initial effort to 
create a test case as well as the necessary maintenance. 

One core feature that facilitates this strategy is the 
Service Discovery (ITF-SD). It allows to automatically 
detect all available test operations in the network which 
are reachable from the start node. Based on this 
information is automatically creates test cases without 
having to define the sub nodes – exploiting the already 
defined system hierarchy. 

This eliminates the need to maintain the test cases when 
the topology of the network (or just the name of a 
subsystem) changes. Both partly pre-defined (auto-
detecting a specific sub tree only) and on-the-fly test 
cases (auto-detecting the entire test tree) are possible.  

The Finite State Machine (FSM) 
The finite state machine is the main building block of a 

test operation. It defines the available system states and 
the legal transitions to move between them, and serves as 
the common specification for all test operations. 
Consequently, the FSM should be quite flexible to allow a 
diverse set of test types – starting from self-tests that 
would need only one single transition, to complex 
distributed tests that require loops with plenty of 
synchronization between the nodes. 

Figure 3 shows the finite state machine that is used for 
the Interconnection Test Framework. It features six 
transitions: setup, prepare, execute, analyze, next and 
summarize. Each test has at least one loop, the number 
being either defined statically in the test case definition or 
set dynamically at runtime (by any node). 
 

 

Figure 3: The finite state machine for all test operations. 
 

FSM Pruning 
As shown in the previous section, the FSM features a 

loop. Each loop provides four different transitions – 
prepare, execute, analyze and next. Each of these 
transitions has to be called in every subsystem in every 
loop. However, most test operations will not need that 
many steps, e.g. execute and analyze only might be 
sufficient. Nevertheless, the empty transitions have to be 
called as well – leading to a significant performance 
penalty when many loops are required (not to mention 
that every connection to be made has a risk to fail). 

To get rid of these disadvantages while still providing a 
flexible and unique FSM, FSM pruning (or transition-
skipping) is applied. During the first loop the framework 
automatically detects which transitions are empty (i.e. not 
in use) and uses this information to skip those transitions 
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in the following loops. This works on a per sub-tree basis. 
The only thing the developer has to do is not to 
implement the corresponding transition. 

Figure 4 shows the actual FSM that will be utilized in 
case the prepare transition is empty. 
 

 

Figure 4: FSM Pruning: Skipping the prepare transition. 
 

Sequences 
Sequences are used to define the order in which a 

transition should be executed in different subsystems of 
the same level of the hierarchy. Their main purpose is to 
define dependencies. If nothing is specified explicitly, the 
default rule is to execute everything in parallel.  

Shared Memory 
The communication in the Trigger Supervisor system is 

strictly top-down. However, for some tests it is 
convenient or even necessary to communicate with other 
(e.g. the neighbor) nodes. 

Therefore, the ITF provides a simple shared memory, 
based on name/value pairs. A name may also refer to a 
file on the local hard disk – the framework will 
automatically take care of syncing it to any node that 
needs the file.  

The Test Result 
The basic building block of a test result is the 

ResultItem. A ResultItem – either of type success or 
failure – may contain a message and additional attributes 
(which allows structured information). Neutral items (so-
called properties) are possible too to include general 
information, e.g. the current state of the hardware. 

It is also possible to store detailed result data in 
separate files. A test may generate as many ResultItems 
as required. To issue a failure with an empty message and 
two attributes all that is required is something like 
 

failure("").attributes() 
.add("source", boardID) 
.add("expected", pattern)); 

 

(Custom) Views / Analyzers 
In order to visualize the test result in a user-friendly 

way, result views are provided. With the default view 
(Fig. 5) the ResultItems of all systems and loops can 
easily be examined. By using AJAX even huge test 
results with thousands of items can be browsed through 
without putting a heavy load on the browser.  
 

 

Figure 5: The framework’s default result view. 
 

In order to provide higher flexibility and facilitate a 
wide variety of test types, custom result views / analyzers 
are possible as well (like the one in Fig. 6). This allows 
interpreting the result in a specific way and, in particular, 
visualizing it according to the needs of that type of test. 

 

 

Figure 6: A custom result view. 
 

Central History 
All test results are automatically stored into the 

database to provide a central history. Therefore, the 
results can be evaluated and compared to previous results 
at any later time. As one of the goals of the ITF is to be 
database independent, this will fail silently in case no 
database is available. 

As an additional feature automatic logging of all 
actions and (sub) results is provided to help debugging 
issues. 

RELATED WORK 
The CMS experiment with its many custom-made 

hardware units is, well, unique. Therefore, the Trigger 
Supervisor - a system which is responsible for centrally 
controlling all those units – already had to be developed 
in-house as there was no other solution available. Thus, 
the main constraint was that the Interconnection Test 
Framework must run within the Trigger Supervisor 
environment.  

As a result, there was no other solution than to develop 
the ITF from scratch for the specific needs of the CMS 
Level-1 Trigger, after gathering the requirements from 
different subsystem groups. The basic idea has already 
been stated in [7], including an original, loop-free version 
of the finite state machine.  

In the wider sense, all the XUnit frameworks can be 
considered related work. However, although some 
concepts are similar and ideas were derived in particular 
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from JUnit [8], those are frameworks for unit testing and 
not for distributed testing. 

CONCLUSION 
This paper introduced the Interconnection Test 

Framework for the CMS Level-1 Trigger System, a 
solution for testing connections between several nodes of 
a distributed system. The framework is built on top of the 
Trigger Supervisor framework, and allows executing 
transitions with arbitrary actions synchronously on 
several systems.  

The excellent flexibility and extensibility of the 
Interconnection Test Framework was shown – both a 
wide variety of test types as well as custom result 
analyzers are possible. Even more important is that the 
framework tries to reuse many concepts of the underlying 
Trigger Supervisor framework, enabling the test 
developers to start right away by using already familiar 
knowledge. 

However, this also means that the concrete 
implementation of the ITF is applicable for our 
environment only. Nevertheless, the concepts and the 
conclusions are hopefully useful for others as well. 

Another limitation is due to the fact that XML is quite 
verbose, which limits the amount of data that can be 
stored without affecting performance. With the current 
implementation, about 10000 result items is a reasonable 
limit (could be improved if necessary). 

Still, XML is an ideal choice for both the configuration 
and the result as it is highly flexible and easy to maintain 
(in contrast to e.g. JSON). It makes development so much 
faster if you are able to add attributes or entire trees on-
the-fly without having to change anything in your code. 

Simplicity is the main prerequisite for user acceptance, 
and thus the key ingredient for making the framework 
successful. This was achieved by reusing the concepts of 
the TS framework and by keeping the required test 
configuration to a bare minimum with features like the 
Service Discovery. 

The second critical factor is performance. After some 
analysis we figured out the minimal Finite State Machine 
that would be needed to implement our tests. As four 

steps per loop would slow down many tests, we decided 
to automatically prune the FSM instead of providing 
several versions. This makes life easier for the developers 
but still allows high performance. 

Although the framework is constantly being developed 
further, it already provides a stable environment for 
various kinds of tests in the CMS Level-1 Trigger system 
where it proved to be immediately applicable for real-
world use cases. 
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