
INTERCONNECTION TEST FRAMEWORK FOR THE
CMS LEVEL-1 TRIGGER SYSTEM

J. Hammer, CERN, Geneva, Switzerland
M. Magrans de Abril, Wisconsin University, Madison, Wisconsin, U.S.A.

C-E. Wulz, Austrian Academy of Sciences, Vienna, Austria

Abstract
The Level-1 Trigger Control and Monitoring System is

a software package designed to configure, monitor and
test the Level-1 Trigger System of the Compact Muon
Solenoid (CMS) experiment at CERN's Large Hadron
Collider. It is a large and distributed system that runs over
50 PCs and controls about 200 hardware units.

The objective of this paper is to describe and evaluate
the architecture of a distributed testing framework – the
Interconnection Test Framework (ITF). This generic and
highly flexible framework for creating and executing
hardware tests within the Level-1 Trigger environment is
meant to automate testing of the 13 major subsystems
interconnected with more than 1000 links. Features
include a web interface to create and execute tests,
modeling using finite state machines, dependency
management, automatic configuration, and loops.
Furthermore, the ITF will replace the existing
heterogeneous testing procedures and help reducing both
maintenance and complexity of operation tasks.

INTRODUCTION
The Compact Muon Solenoid (CMS) experiment at the

Large Hadron Collider (LHC) of CERN, the European
Organization for Nuclear Research, is a detector designed
to find answers to some of the fundamental open
questions in physics today [1].

Since millions of collisions of protons occur every
second and only a small fraction of these can provide
insight into new physics, events have to be selected on-
line according to their properties. This is done by the
trigger system, a vital part of the experiment.

The trigger system is organized in two levels: (1) The
Level-1 Trigger (L1T) [2] is a custom-designed, largely
programmable electronic system which preselects the
most interesting collisions for further evaluation. These
collisions are then examined and – if selected – stored
permanently by (2) the High-Level Trigger (HLT) [3],
which consists of a farm of industrial processors.

The Trigger Supervisor Framework
The L1T is configured, tested and monitored using the

Level-1 Trigger Control and Monitoring System – a large
and distributed system that runs over 50 PCs and controls
about 200 hardware units (~ 6000 boards). Each of the
components of this system is based on the Trigger
Supervisor (TS) Framework [4], written in C++,
providing a web interface utilizing AJAX.

The TS architecture is composed of a hierarchical tree
of nodes, where the central (i.e. the top) node is in charge

of coordinating the access to the subsystems [5]. Each
node is accessible by a well-defined interface based on
the Simple Object Access Protocol (SOAP) [6], and can
run one or more commands and operations
simultaneously. Operations are stateful objects that use
transitions to move between different states of their
internal finite state machine (FSM) – which can be
defined freely.

The communication hierarchy is strictly top-down –
following the request-response model – with subsystems
not even knowing their supervisor nodes. Fig. 1 shows an
example system setup.

Need for an Interconnection Test Framework
With more than 1000 links connecting the about 200

hardware units, thorough testing is crucial. So far, the
various subsystems have used custom scripts for testing –
controlling the TS nodes via SOAP commands. Needless
to say, this leads to a lot of duplicated effort with a high
level of maintenance required. Even more important, this
approach does not allow the centrally controlled
execution of tests (in particular by non-experts!), nor to
execute them automatically at specific events.

Figure 1: An example Level-1 Trigger system setup.

Instead, local test methodologies heavily rely on the
respective subsystem experts and time-consuming
coordination between them and the global run control
operators. All these factors lead to unnecessary system
downtime and a waste of precious manpower, both
undesirable consequences for such a huge experiment
involving large resources of manpower and investment.

A much better solution would be to provide an
interconnection test framework on top of the existing TS
framework. This could make use of the already available
infrastructure and facilities, and provide additional
common functionality for distributed testing. However,
although the basic idea was already stated in [6], a
sophisticated implementation was yet to be developed.

Proceedings of ICALEPCS2011, Grenoble, France WEPMS001

Quality assurance 973 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Requirements and Constraints
Among the requirements:
 Main focus on simplicity: The users should need as

little effort as necessary to use the ITF (simple API,
little setup/configuration, …).

 Tests can be run both locally and centrally
controlled.

 Tests can be run in different network environments
(with or without database; with various and even
fake top nodes, …).

 Unlimited subsystem hierarchy depth.
 Shall be very flexible to allow a large range of

diverse tests (including self-tests).
Imposed constraints were:
 Shall be embedded into the existing Trigger

Supervisor environment, i.e. the tests shall be
implemented using TS operations.

 Shall allow both interactive and scripted execution.

ARCHITECTURE

Overview
The Interconnection Test Framework is built on top of

the Trigger Supervisor Framework, and therefore fully
embedded into the existing environment. As a result, the
ITF is highly TS specific, using the available API to
communicate with subsystems and drive operations.
Figure 2 shows the basic architecture:

Figure 2: The architecture of the Interconnection Test
Framework.

Each node runs one Interconnection Test operation – a
sub class of the framework’s base class, with the concrete
functionality implemented by the user. Any node will
automatically act as a supervisor once there are sub nodes
defined for it.

Which and how many nodes (i.e. systems) are involved
depends on the test case – essentially an XML document
– that defines all the necessary details for a specific test
(e.g. user-defined parameters).

Service Discovery (ITF-SD)
Much effort was spent on simplicity. Wherever

possible, the “convention over configuration” paradigm

was applied to reduce both the required initial effort to
create a test case as well as the necessary maintenance.

One core feature that facilitates this strategy is the
Service Discovery (ITF-SD). It allows to automatically
detect all available test operations in the network which
are reachable from the start node. Based on this
information is automatically creates test cases without
having to define the sub nodes – exploiting the already
defined system hierarchy.

This eliminates the need to maintain the test cases when
the topology of the network (or just the name of a
subsystem) changes. Both partly pre-defined (auto-
detecting a specific sub tree only) and on-the-fly test
cases (auto-detecting the entire test tree) are possible.

The Finite State Machine (FSM)
The finite state machine is the main building block of a

test operation. It defines the available system states and
the legal transitions to move between them, and serves as
the common specification for all test operations.
Consequently, the FSM should be quite flexible to allow a
diverse set of test types – starting from self-tests that
would need only one single transition, to complex
distributed tests that require loops with plenty of
synchronization between the nodes.

Figure 3 shows the finite state machine that is used for
the Interconnection Test Framework. It features six
transitions: setup, prepare, execute, analyze, next and
summarize. Each test has at least one loop, the number
being either defined statically in the test case definition or
set dynamically at runtime (by any node).

Figure 3: The finite state machine for all test operations.

FSM Pruning
As shown in the previous section, the FSM features a

loop. Each loop provides four different transitions –
prepare, execute, analyze and next. Each of these
transitions has to be called in every subsystem in every
loop. However, most test operations will not need that
many steps, e.g. execute and analyze only might be
sufficient. Nevertheless, the empty transitions have to be
called as well – leading to a significant performance
penalty when many loops are required (not to mention
that every connection to be made has a risk to fail).

To get rid of these disadvantages while still providing a
flexible and unique FSM, FSM pruning (or transition-
skipping) is applied. During the first loop the framework
automatically detects which transitions are empty (i.e. not
in use) and uses this information to skip those transitions

WEPMS001 Proceedings of ICALEPCS2011, Grenoble, France

974C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

in the following loops. This works on a per sub-tree basis.
The only thing the developer has to do is not to
implement the corresponding transition.

Figure 4 shows the actual FSM that will be utilized in
case the prepare transition is empty.

Figure 4: FSM Pruning: Skipping the prepare transition.

Sequences
Sequences are used to define the order in which a

transition should be executed in different subsystems of
the same level of the hierarchy. Their main purpose is to
define dependencies. If nothing is specified explicitly, the
default rule is to execute everything in parallel.

Shared Memory
The communication in the Trigger Supervisor system is

strictly top-down. However, for some tests it is
convenient or even necessary to communicate with other
(e.g. the neighbor) nodes.

Therefore, the ITF provides a simple shared memory,
based on name/value pairs. A name may also refer to a
file on the local hard disk – the framework will
automatically take care of syncing it to any node that
needs the file.

The Test Result
The basic building block of a test result is the

ResultItem. A ResultItem – either of type success or
failure – may contain a message and additional attributes
(which allows structured information). Neutral items (so-
called properties) are possible too to include general
information, e.g. the current state of the hardware.

It is also possible to store detailed result data in
separate files. A test may generate as many ResultItems
as required. To issue a failure with an empty message and
two attributes all that is required is something like

failure("").attributes()
.add("source", boardID)
.add("expected", pattern));

(Custom) Views / Analyzers
In order to visualize the test result in a user-friendly

way, result views are provided. With the default view
(Fig. 5) the ResultItems of all systems and loops can
easily be examined. By using AJAX even huge test
results with thousands of items can be browsed through
without putting a heavy load on the browser.

Figure 5: The framework’s default result view.

In order to provide higher flexibility and facilitate a
wide variety of test types, custom result views / analyzers
are possible as well (like the one in Fig. 6). This allows
interpreting the result in a specific way and, in particular,
visualizing it according to the needs of that type of test.

Figure 6: A custom result view.

Central History
All test results are automatically stored into the

database to provide a central history. Therefore, the
results can be evaluated and compared to previous results
at any later time. As one of the goals of the ITF is to be
database independent, this will fail silently in case no
database is available.

As an additional feature automatic logging of all
actions and (sub) results is provided to help debugging
issues.

RELATED WORK
The CMS experiment with its many custom-made

hardware units is, well, unique. Therefore, the Trigger
Supervisor - a system which is responsible for centrally
controlling all those units – already had to be developed
in-house as there was no other solution available. Thus,
the main constraint was that the Interconnection Test
Framework must run within the Trigger Supervisor
environment.

As a result, there was no other solution than to develop
the ITF from scratch for the specific needs of the CMS
Level-1 Trigger, after gathering the requirements from
different subsystem groups. The basic idea has already
been stated in [7], including an original, loop-free version
of the finite state machine.

In the wider sense, all the XUnit frameworks can be
considered related work. However, although some
concepts are similar and ideas were derived in particular

Proceedings of ICALEPCS2011, Grenoble, France WEPMS001

Quality assurance 975 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

from JUnit [8], those are frameworks for unit testing and
not for distributed testing.

CONCLUSION
This paper introduced the Interconnection Test

Framework for the CMS Level-1 Trigger System, a
solution for testing connections between several nodes of
a distributed system. The framework is built on top of the
Trigger Supervisor framework, and allows executing
transitions with arbitrary actions synchronously on
several systems.

The excellent flexibility and extensibility of the
Interconnection Test Framework was shown – both a
wide variety of test types as well as custom result
analyzers are possible. Even more important is that the
framework tries to reuse many concepts of the underlying
Trigger Supervisor framework, enabling the test
developers to start right away by using already familiar
knowledge.

However, this also means that the concrete
implementation of the ITF is applicable for our
environment only. Nevertheless, the concepts and the
conclusions are hopefully useful for others as well.

Another limitation is due to the fact that XML is quite
verbose, which limits the amount of data that can be
stored without affecting performance. With the current
implementation, about 10000 result items is a reasonable
limit (could be improved if necessary).

Still, XML is an ideal choice for both the configuration
and the result as it is highly flexible and easy to maintain
(in contrast to e.g. JSON). It makes development so much
faster if you are able to add attributes or entire trees on-
the-fly without having to change anything in your code.

Simplicity is the main prerequisite for user acceptance,
and thus the key ingredient for making the framework
successful. This was achieved by reusing the concepts of
the TS framework and by keeping the required test
configuration to a bare minimum with features like the
Service Discovery.

The second critical factor is performance. After some
analysis we figured out the minimal Finite State Machine
that would be needed to implement our tests. As four

steps per loop would slow down many tests, we decided
to automatically prune the FSM instead of providing
several versions. This makes life easier for the developers
but still allows high performance.

Although the framework is constantly being developed
further, it already provides a stable environment for
various kinds of tests in the CMS Level-1 Trigger system
where it proved to be immediately applicable for real-
world use cases.

ACKNOWLEDGMENT
We would like to thank Christian Hartl and Thomas

Themel for providing ideas and valuable feedback. Franz
Mittermayr developed the original versions of the test
configuration and execution user interfaces.

REFERENCES
[1] CMS Collaboration, “CMS Technical Proposal”,

CERN/LHCC 94-38, 1994.
[2] CMS Collaboration, “The TriDAS Project – The

Level-1 Trigger Technical Design Report”,
CERN/LHCC 2000-38, 2000.

[3] CMS Collaboration, “The TriDAS Project – Data
Acquisition and High-Level Trigger Technical
Design Report”, CERN/LHCC 2002-26, 2002.

[4] I. Magrans de Abril, C-E. Wulz, J. Varela, “Concept
of the CMS Trigger Supervisor”, IEEE Trans. Nucl.
Sci. Vol. 53 Nr. 2, 474-483, 2006.

[5] I. Magrans de Abril and M. Magrans de Abril, “The
CMS Trigger Supervisor Project”, IEEE Nuclear
Science Symposium Conference Record, Puerto
Rico, 23-29 October, 2005.

[6] Simple Object Access Protocol,
http://www.w3.org/TR/soap.

[7] I. Magrans de Abril, “The CMS Trigger Supervisor:
Control and Hardware Monitoring System of the
CMS Level-1 Trigger at CERN”, Doctoral Thesis,
Universitat Autonoma de Barcelona, 2008.

[8] The JUnit Framework, http://www.junit.org.

WEPMS001 Proceedings of ICALEPCS2011, Grenoble, France

976C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

