
COMPARATIVE ANALYSIS OF EPICS IOC AND MARTe FOR THE
DEVELOPMENT OF A HARD REAL-TIME CONTROL APPLICATION∗

A. Barbalace , A. Luchetta, G. Manduchi, C. Ta† liercio, Consorzio RFX, P
B.B. Carvalho, D.F. Valcárcel, IPFN, Lisboa, Portugal

Abstract

EPICS is used worldwide to build distributed control
systems for scientific experiments. The EPICS software
suite is based around the Channel Access (CA) network
protocol that allows the communication of different EPICS
clients and servers in a distributed architecture. Servers are
called Input/Output Controllers (IOCs) and perform real-
world I/O or local control tasks. EPICS IOCs were origi-
nally designed for VxWorks to meet the demanding real-
time requirements of control algorithms and have lately
been ported to different operating systems.

The MARTe framework has recently been adopted to de-
velop an increasing number of hard real-time systems in
different fusion experiments. MARTe is a software library
that allows the rapid and modular development of stand-
alone hard real-time control applications on different oper-
ating systems. MARTe has been created to be portable and
during the last years it has evolved to follow the multi-core
evolution.

In this paper we review several implementation differ-
ences between EPICS IOC and MARTe. We dissect their
internal data structures and synchronization mechanisms to
understand what happens behind the scenes. Differences in
the component based approach and in the concurrent model
of computation in EPICS IOC and MARTe are explained.
Such differences lead to distinct time models in the com-
putational blocks and distinct real-time capabilities of the
two frameworks that a developer must be aware of.

INTRODUCTION

Developing a real-time control application is a complex
task if it has to be designed from the ground up. Every-
thing must be checked and carefully reviewed to guaran-
tee bug-free code and bounded execution times. Likely
there exist many different programming environments to
code a real-time control system and many are suited for
scientific experiments. In this work the EPICS [1] and the
MARTe/BaseLib [2] (in the following referred as MARTe)
software frameworks are analyzed.

The EPICS software suite is built around the Channel
Access (CA) network protocol that allows the communica-
tion of different EPICS clients and servers in a distributed
architecture. Servers are called Input/Output Controllers
(IOCs) and perform real-world I/O or local control tasks.

∗This work was set up with financial support by Fusion for Energy.
† telephone: +39 049 8295039, e-mail: antonio.barbalace@igi.cnr.it

MARTe is a software library that allows the rapid and
modular development of stand-alone hard real-time control
applications on different Operating Systems (OSs).

As far as we know there are no published compara-
tive analyses of software frameworks for the development
of control applications, especially involving EPICS and
MARTe. This work is intended to complement an earlier
paper [3] where we presented a performance comparison
of the two software frameworks.

We analyze EPICS version 3.14.11 and MARTe CVS
version June 2011. All facts presented here are OS-
independent, whereas paper [3] refers to Linux PRE-
EMPT RT. In this paper we address several implementa-
tion differences and similarities of the two software frame-
works which are both written in the C/C++ language.

ARCHITECTURAL OVERVIEW

Component Based Approach

Both EPICS IOC and MARTe present a modular archi-
tecture where components can be connected to carry out the
required control algorithm. Components in EPICS IOC are
implemented by records, while in MARTe they are imple-
mented by Generic Application Modules (GAMs). Records
are logically grouped in databases, GAMs belong to a Real
Time Thread.

In EPICS new record types (or Record Supports) can be
created by providing a set of routines and data structures
adhering to a given C prototype; the newly created record
will carry out the required computation. For every record
type it is possible to define a new Device Support that en-
ables the record to interact with an I/O device.

New components in MARTe are created by subclassing
the GAM class or any other descendant of the GAM class.
By subclassing, all the functionalities required to properly
interact with the MARTe environment are inherited by the
new component. In MARTe only two special subclasses
of the GAM can handle data communication with a device
driver: InputGAM and OutputGAM. Such classes can be
associated to an I/O device via a Generic ACQuisition
Module (GACQM), similar to what is called Device
Support in an EPICS IOC.

Configuration Capability
The current configuration of both frameworks, i.e. the

sets of component instances and the way they are intercon-

Padova Italy,

Proceedings of ICALEPCS2011, Grenoble, France WEPMN036

Embedded + realtime software 961 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



nected, is defined in one or more text files which get parsed
to produce the target application.

In an EPICS IOC the records that populate a database are
declared in a configuration file. In MARTe a configuration
file contains not only the functional blocks (GAMs) of the
control algorithm but also instance descriptions of generic
C++ classes. Such instance descriptions can be specified
to extend the functionality of the target MARTe applica-
tion. As an example, to monitor the data exchanged by the
GAMs in a control loop an instance description of a Web
Server class can be included in the configuration file.

In both EPICS and MARTe a control application is de-
scribed by a configuration file. The way in which such files
are used to create the application differs between the two
frameworks.

Creating a New Application In EPICS a configura-
tion file is used to generate IOC source code before compi-
lation. Instead, in MARTe, a configuration file is loaded by
a running MARTe system.

Both frameworks come with a set of base components
but the developer may write its own components (records
or GAMs). When a new record is ready to be tested in
EPICS the developer has to create a new project, insert the
record with all ancillary files in the project, create the con-
figuration files, compile and run the project. In MARTe
the development process is straightforward: after compil-
ing the new component the developer has only to write a
configuration file (actually by modifying a template).

Updating a Running Application The value and
compound data (database links included) of a record can be
tuned at runtime being each field implemented by a Process
Variable (PV). To load or remove records not previously
loaded in EPICS a user has to reconfigure and recompile
all the application from scratch and then run it again.

In MARTe in order to change a GAM parameter it is nec-
essary to stop the execution of every MARTe activity and
reload the framework. It is however not necessary to re-
compile the application. A new component which allows
the runtime modification of parameters and signal values
called Configuration Library (CL) [4] was recently intro-
duced.

Internal Data Structures

In EPICS IOCs every record field is a PV, and in order to
manage thousand of PVs, EPICS makes use of hash tables
for PV lookup.

MARTe is mostly based on linked lists and sophisticated
data structures have not been introduced. Data querying at
runtime is still lacking.

Both frameworks create during initialization all data
structures that are required at runtime. It is the respon-
sability of the developer to implement efficient (time-
bounded) code in the process routine (EPICS IOC) or in
the execute method (MARTe) of a computational block.

In a hard real-time application unbounded delays due to
badly written algorithms or network accesses could deteri-
orate the control.

CONCURRENT MODELS OF
COMPUTATION

Concurrent models of computation (CMoC) are of great
interest when dealing with embedded systems, especially
feedback controllers. A model of concurrence specifies
how interaction, communication and control flow will be
handled between components in a software application. In
the following the models of computation of EPICS and
MARTe are described.

EPICS IOC Record Processing

A single record in an EPICS IOC can be accessed con-
currently for reading, writing or processing. Reading and
writing can trigger processing, before fetching a value
(demand-driven) and after updating a value (data-driven).

The processing of a chain of records takes place within a
scan (an operating system’s thread). A scan can be locally
triggered periodically (periodic scan) or by software and
hardware events (event scan, IO event scan); remotely by
caGet or caPut operations. After the processing has been
triggered on the first record of a chain those records that
have to be executed next are determined by the associated
links in the database. A link can carry data and processing
(INLINK, OUTLINK) or simply processing (FWDLINK).
A chain of records is executed until there exist processing
links or records which can be passively processed by other
scans (passive scan in EPICS terminology). Very complex
processing chains can be designed in EPICS mixing de-
mand (INLINK, FWDLINK) and data (OUTLINK) -driven
processing.

Because a single record can be concurrently accessed by
different scans, per-record locks exist. Synchronization de-
lays due to concurrency can deteriorate the real-time re-
sponse of a control algorithm. Typically such a situation
arises when a record is concurrently updated locally, be-
longing to a processing scan chain, and remotely by a CA
operation (Fig. 1). The local operation issued by the EPICS
IOC has lower priority then the remote operation.

Figure 1: In EPICS a locally triggered scan may need to
wait for the end of the processing of a remotely invocated
record.

WEPMN036 Proceedings of ICALEPCS2011, Grenoble, France

962C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software



MARTe GAM Processing

MARTe has been designed as a software framework for
hard real-time, low-latency applications. It eliminates con-
currency because it is a source of delays and uncertainties
in code execution. MARTe is a lock-free execution en-
vironment where each GAM executes serially in a thread
(RealTimeThread) to which it is uniquely tied. MARTe
has been designed to support a multiprocessor environment
and the developer is encouraged to map a RealTimeThread
per CPU.

GAMs communicate only within thread bounds where
communication is made safe by the inherently serial ex-
ecution of the thread. Inter-thread communication exists,
but is managed by special GACQMs. GAMs communi-
cate by means of a thread-level data buffer called Dynamic
Data Buffer (DDB); every GAM knows how to access their
private data area. This model implies a strictly data-driven
processing.

As mentioned in the previous section, parameter and sig-
nal values can be modified via CL. Remotely changing a
value in a running MARTe application is possible and is
completely asynchronous with the execution of the Real-
TimeThread (highest priority task).

Processing Details

Stack Frame MARTe is less memory resource-starved
than EPICS. A long EPICS’ chain of passive records with
many links can produce an out-of-stack exception, while
MARTe will never exhibits this problem because the num-
ber of execution frames on the stack is O(1) while in
EPICS it is O(n) where n is the number of passive chained
records.

Processing Links Links in MARTe define only the
flow of data and therefore they establish the data depen-
dency between computational blocks. In an EPICS IOC
links define the flow of data and processing.

Data Conversion at Interfaces Data diversity be-
tween blocks can be handled by the framework to let blocks
with different data interfaces communicate. Data conver-
sion can be managed at the node level via polymorphic
get/put routines (Fig. 2) or by means of an external (global)
adapter (Fig. 3). EPICS supports data diversity by means
of a rich set of protocol adapters; MARTe does not support
data diversity: two communicating GAMs must adhere to
the same data interface.

Figure 2: Actor A shown a polymorphic interface: the same
get method will be overloaded to return different data types
in function of the data type required by actor B.

Fanout In electronic circuits the output from one In-
tegrated Circuit (IC) can be connected to several ICs. The
fanout indicates how many ICs can be connected to a sin-
gle output. The same concept also applies to records and
GAMs. In MARTe one output signal from a GAM can be
connected to as many GAMs as needed.In EPICS it is pos-
sible to have many INLINKs to the same record’s field but
it is not possible to have an OUTLINK or a FWDLINK
connected to more than one record’s field; to fulfill this
need a fanoutRecord is supplied with EPICS.

Data Tokens In both software the processing is due to
a new data token and there is no buffering between nodes
and the number of tokens to be consumed in any processing
of a node is always one.

CONCURRENT MODELS OF TIME

The natural way to code a control algorithm is via dis-
cretization of a continuous time model. The discretized
algorithm is not aware of time, moreover it is usual prac-
tice to maintain a discrete function f(n) instead of f(Tn)
where T , the sampling period, is explicit in the formula.
The algorithm runs after the samples are transferred from
the data acquisition subsystem, once per sampling period.
The period T is usually fixed a priori during the design
phase.

Coding the Algorithm in MARTe

In MARTe each GAM is triggered once per period and
the time elapsed between calls to GAMs is equivalent to
period T . Periodic timing is provided by a GACQM in-
terfaced with a TimeInput GAM. Algorithmic GAMs are
aware of the absolute time and of the execution period T .

Coding the Algorithm in EPICS

EPICS’ records can be processed concurrently and lock
mechanisms have been developed to synchronize their pro-
cessing. In EPICS no time model is assumed, a record
can be processed at any time. Careful design of an EPICS
IOC database is required to achieve periodic processing of
a record. To develop a record, a user have to take into ac-
count the possibility that a discrete algorithm will be exe-
cuted in a non-uniform sampling environment.

The smart way chosen in EPICS to develop a PID con-
troller (pid, cpid and epid records) is to accept that the

Figure 3: Both actors have a rigid interface: a protocol
adaptor is necessary. A’s get method returns a unique data
type and B’s put method fetches a precise data type.

Proceedings of ICALEPCS2011, Grenoble, France WEPMN036

Embedded + realtime software 963 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



PID will be called at non-uniform time intervals, and to
define a minimum amount of time between record process-
ings. This is defined in the Minimum Delta Time (MDT)
field of the PID record. If the amount of time between the
last time the record was processed and the current time is
less than MDT, then the record is not processed.

REAL-TIME SUPPORT

Both EPICS IOC and MARTe have been used on Vx-
Works installations but this is not enough to state that they
are hard real-time software frameworks. In [3] we have
compared the same test control loop implemented as an
EPICS IOC and as a MARTe application on a Linux PRE-
EMPT RT system. EPICS IOC exhibits a wider jitter com-
pared to the MARTe counterpart. In this section we figure
out from where those sources of jitter come.

Event Triggering

In MARTe the way in which a device driver (GACQM)
waits for a hardware event is selectable (polling or inter-
rupt) and defined in the configuration file. In EPICS the de-
veloper can not choose how to wait for an event, it depends
on the device driver. Polling may be advantageous because
it can eliminate the OS’s process switching (which could
introduce further delays due to scheduling other tasks).

Event Dispatching

In EPICS every event is queued for execution and never
lost. There are different queues of execution and the execu-
tion policy is FIFO. One queue handles CA requests; three
queues (low, medium and high priority) are shared between
events and IO events and there is one queue per periodic
scan (Fig. 4). This mechanism decouples an event from
the associated servicing code but can generate unbounded
latencies. Different scans that originate from different in-
terrupt sources but with the same priority are enqueued on
the same queue. Such an approach can introduce consid-
erable jitter in the generated waveforms and task deadline
misses. MARTe does not queue any event: events can be
lost but there is no jitter due to events enqueuing.

Exploiting Multiprocessors

MARTe allows the developer to assign threads and IRQs
to specific processors. This facility protects the execution
and promotes a deterministic response of the thread. The
affinity mask of threads and IRQs on the processors is a
parameter in the MARTe configuration file.

The EPICS Operating System Interface (OSI) layer
does not support multiprocessor environments, i.e.
epicsThreadCreatedoes not accept any CPU affinity ar-
gument. A static set of queues is defined for each instance
of EPICS IOC. This approach does not scale to multipro-
cessors.

Figure 4: EQN model of the EPICS events queuing system
running on a single processor/core machine.

FINAL CONSIDERATIONS

Since EPICS has been on the scene since 1989, the num-
ber of tools available to design and configure a system has
grown. The same does not hold for the real-time support
and especially for the exploitation of emerging processor
technologies (multiprocessor architectures). Coding a dis-
cretized control algorithm can be tricky.

MARTe, on the other hand, has so far only a limited set
of design and configuration tools. Some work is ongoing
to exploit the Ptolemy [5] project as a tool for configur-
ing and simulating MARTe applications. MARTe appears
to be crafted for real-time, low latency applications. To
cope with such demanding requirements it exploits emerg-
ing multi-core architectures.

REFERENCES

[1] A. Johnson. (2007) Epics about [Online]. Available:
http://www.aps.anl.gov/epics/about.php

[2] A.C. Neto, F. Sartori, F. Piccolo, R. Vitelli, G. De Tom-
masi, L. Zabeo, A. Barbalace, H. Fernandes, D.F. Valcárcel,
and A.J.N. Batista, “MARTe: A Multiplatform Real-Time
Framework”, IEEE Transactions on Nuclear Science, vol.
57 no. 2, pp. 479 – 486, Apr. 2010.

[3] A. Barbalace, G. Manduchi, A. Neto, G.D. Tommasi,
F. Sartori, and D.F. Valcárcel, “Performance comparison of
EPICS IOC and MARTe in a hard real-time control applica-
tion”, Real Time Conference (RT), 2010 17th IEEE-NPSS,
pp. 1 – 5, May. 2010.

[4] D.F. Valcárcel, A. Barbalace, A. Neto, A.S. Duarte,
D. Alves, B.B. Carvalho, P.J. Carvalho, J. Sousa, H. Fer-
nandes, B. Gonalves, F. Sartori, and G. Manduchi, “EPICS
as a MARTe configuration environment”, IEEE Transaction
on Nuclear Science, vol. 58 no. 4, pp. 1472 – 1476, Aug.
2011.

[5] U. B. E. Department. (2011) Ptolemy project home page
[Online]. Available: http://ptolemy.eecs.berkeley.edu/

WEPMN036 Proceedings of ICALEPCS2011, Grenoble, France

964C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software


