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Abstract 
Key instrumentation devices like counter/timers, 

analog-to-digital converters and encoders provide scalar 
data input. Many of them allow fast acquisitions, but do 
not provide hardware triggering or buffering mechanisms. 
A Linux 2.4 kernel driver called Hook was developed at 
the ESRF as a generic software-triggered buffering 
interface. This work presents the portage of the ESRF 
Hook interface to the Linux 2.6 kernel. The interface 
distinguishes two independent functional groups: trigger 
event generators and data channels. Devices in the first 
group create software events, like hardware interrupts 
generated by timers or external signals. On each event, 
one or more device channels on the second group are read 
and stored in kernel buffers. The event generators and 
data channels to be read are fully configurable before 
each sequence. Designed for fast acquisitions, the Hook 
implementation is well adapted to multi-CPU systems, 
where the interrupt latency is notably reduced. On heavily 
loaded dual-core PCs running standard (non real time) 
Linux, data can be taken at 1 KHz without losing events. 
Additional features include full integration into the /sys 
virtual file-system and hot-plug devices support. 

INTRODUCTION 
Many scientific experiments carried out at the ESRF 

beamlines (BL) are based on the scan concept, where the 
evolution in time of one or more magnitudes is measured, 
typically while scanning the values of one or more 
parameters. Two modes of scan execution are identified. 
In “step-by-step mode”, scan steps and measurements are 
performed sequentially (parameter change does not 
overlap in time with detector integration), starting and 
stopping the involved hardware at each point. In 
“continuous mode”, both scan and measurement are 
executed in parallel, increasing the duty cycle of the X-
ray beam utilisation, and/or notably reducing the total 
scan duration. As a drawback, time errors in the 
synchronisation of the readout of all the involved 
magnitudes affect the precision of the continuous scan. 

 Initial support to continuous mode at the ESRF was 
based on a “soft” synchronisation. In the first versions, a 
scan loop sequentially read, as fast as possible, motors 
and counters in a VME crate from a remote control 
workstation. The next approach read all these scan 
magnitudes sequentially inside a program running in the 
VME crate, removing the network from the sources of 
synchronisation error. A third performance improvement 
used a combination of hard and soft synchronisations. A 
hardware event triggered an interrupt request (IRQ), and 
during its IRQ service routine (ISR) all the scan scalar 

parameters (implemented as registers in instrumentation 
boards) were read and stored in a kernel buffer. 

This IRQ Hook mechanism, originally developed in 
OS/9, was extended in Linux 2.2 [1] and 2.4 kernels with 
a flexible configuration interface. A dedicated TACO 
device server allowed the configuration and reading of the 
kernel buffer by the BL control program, running on the 
same PC or on a remote workstation. 

In the migration of the VME and PCI instrumentation 
control at the ESRF to Linux 2.6, the new kernel device 
abstraction was extensively used [2]. In particular, a 
robust VME infrastructure was developed for Symmetric-
Multi-Processor (SMP) environments, supporting device 
hot-plug functionality.  

HOOK INTERFACE 

Device Abstraction 
Virtually all the common instrumentation hardware 

providing scalar parameters can fit in the simple 
device/channel concept. A hardware unit (VME/PCI 
board, serial line/GPIB/Ethernet instrument) is considered 
in this context a device. It groups control registers or 
commands, and exports one or more scalar channels. In 
addition, a device can generate events, typically hardware 
IRQs or operating system (OS) signals. These events are 
used in the Hook structure to trigger the readout of an 
arbitrary set of channels (belonging to the same and/or 
other devices), which are recorded in dedicated buffers. 

Like its Linux 2.4 predecessor, the Hook interface is 
seen as a “kernel service” that instrumentation drivers 
register to using their names. This interface has been 
completely redesigned in Linux 2.6 to explicitly 
distinguish device, event, and channel structures.  The 
same kernel “device” concept already identified by those 
drivers by a major:minor pair, like a specific PCI board 
structure associated to a kernel pci_dev, can contain an 
analogue hook_dev structure. Each hook_dev is the parent 
of a group of hook_chan and/or hook_event structures, 
depending of the board functionality. 

Once all hook_devs, with their hook_events and 
hook_chans, are registered at drivers’ start-up, they are 
ready to be used. The “user” side of the Hook “service” 
configures for an acquisition (Hook buffer) the event 
generator and the data channels to be read at each event. 
The event setup is performed through the board-specific 
drivers because of its complex nature. As a result of this 
setup, the event generator’s driver installs the hook_event 
on the specified Hook buffer. The data channel setup is 
performed through the Hook driver interface, by using a 
list of <drv_name, minor, chan_idx> triplets that reference 
the channels to store on the buffer. ____________________________________________ 
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Each hook_chan has an associated hook_chan_functs; 
the structure defining the methods that carry out its 
specific functionality. During buffer channel setup a 
prepare method is called for each selected channel to 
perform its hardware initialisation. If it succeeds, the 
board driver module is locked to avoid to be removed 
from the kernel, and the hook_chan_functs.lock method is 
called to notify the board driver that the channel is in use. 
On each point the event generator driver calls the Hook 
interface, and the read method is called for all the 
involved hook_chans to trigger their readout. In case the 
channel value is not available immediately (it is called in 
kernel interrupt context), the read method can return a 
delayed completion request. Two solutions are identified 
in such a condition: asynchronous response or “read-
before-next”. In the former, the board driver is 
responsible of calling an asynchronous buffer write Hook 
function once the value is ready. The latter is requested if 
the driver does not provide asynchronous events; it can 
only ensure that the value will ready before the next 
event. Then, the read_before_next method is called to 
retrieve the previous channel value. Upon acquisition end 
the unlock method is called to release the channel. 

A device can have channels of different classes, and 
hence have different set of methods, which might be the 
case of a multi-purpose counter/timer, analogue and 
digital I/O PCI board. 

The current Hook implementation is Linux 2.6 kernel is 
limited to VME and PCI boards, which generate hardware 
IRQs and can be controlled by standard I/O operations. 
Communication-based devices using serial line, GPIB or 
Ethernet interfaces are not covered (yet). This limitation 
is due to both the complexity in accessing these platforms 
from the kernel interrupt context and the latency normally 
associated to those instruments. Nevertheless, Linux 2.6 
kernels are so flexible and well structured that the support 
of those interfaces would be, in principle, possible. 

Buffer Functionality 
As we have seen, a fast acquisition involves an event 

generator, a set of data channels and a kernel buffer. 
Multiple acquisitions, each with its own buffer, can be 
performed in parallel on the same PC; they might share 
data channels if the prepare and lock methods’ 
implementations allow it. The Hook driver creates 5 
buffers by default, but this can be changed at module load 
time. 

Two buffer filling modes are implemented: linear, 
where the acquisition stops once the buffer is full; and 
circular, where a ring buffer is implemented and data 
must be read continuously to not get overwritten. Data 
overrun is not considered a fatal error, but it is always 
reported. 

In addition to kernel memory allocation and 
management, each Hook buffer is in turn a hook_dev. In 
this sense it exports two hook_chans: the point index and 
elapsed time in microseconds, both measured since the 
beginning of the acquisition. These two values are very 
important to determine if an event has been lost, either by 

the kernel (elapsed time between adjacent points higher 
than expected) or by the user-space program reading 
buffers (discontinuity in point index). Each buffer also 
exports a hook_event: a Linux software timer, whose 
period can be set with a time resolution given by the 
kernel HZ timer frequency (HZ=1000 in RedHat EL 4: 1 
ms resolution). 

A simple user-space library allows to configure the 
kernel interface and to read the buffer contents in an 
efficient way. As mentioned before, a TACO server on top 
of the library allows clients like SPEC [3], the central BL 
control application, to retrieve the data on the buffers. For 
ring-buffer acquisitions with intervals below 1 ms, the 
readout must be performed continuously due to the 
limited length of kernel buffers. For these fast 
acquisitions, the TACO server provides a bigger, user-
space buffer and an auxiliary thread to empty the kernel 
buffer accordingly. This relaxes the time constrains of the 
remote SPEC main acquisition loop. 

Virtual sysfs Support 
The Linux 2.6 /sys virtual file-system gives a useful 

user-space visibility of kernel structures. The class 
interface is used in the Hook to export information about 
the registered elements, replicating its tree structure of 
hook_drv, hook_dev, hook_chan and hook_event. In this 
direction, additional read_desc methods in hook_chan and 
hook_event are foreseen to provide a human-readable 
description through /sys interface. 

The Hook driver allows code tracing and debugging 
through messages on the standard kernel syslog interface. 
However, this is far from optimal for very fast 
acquisitions. In order to provide real time status to user 
space, the /sys interface also publishes the instantaneous 
buffer information. It includes buffer setup (size, filling 
mode, list of channels) and buffer state (total number of 
events, number of points to be read and elapsed time since 
start). 

IMPLEMENTATION  

Supported Hardware 
The standard ESRF BL instrumentation PCI and VME 

boards used for fast acquisition has been ported to the 
Linux 2.6 Hook structure: 

• ESRF PCI P201 Counter/Timer  
• ESRF VME VCT6 Counter/Timer 
• Compcontrol CC133 Incremental Encoder 
• ADAS ICV150 Analog-to-Digital Converter (ADC) 
The first two boards implement both data channels and 

event generators; the last two only export data channels. 

SMP and VME Issues 
Linux 2.6 gives an improved support to hot-plug 

dynamics, that is, devices that can appear and disappear 
without system control. This is the case of VME devices 
connected to PCI/VME bus couplers; if the remote crate 
is disconnected the corresponding VME devices no longer 
exist on the system. It becomes an important issue in SMP 
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systems, because one or more CPU/cores could be 
referring to one device while another is trying to delete it. 
Such situation is even more critical in the Hook 
environment, which works on interrupt context and the 
system can immediately hang on invalid operations. 
Special care has been taken to protect all the data 
structures against these different situations.  

Nevertheless, some crashes or conflicts are unavoidable 
if performance must be kept as first design priority. One 
example is found on scans with a PCI IRQ-based event 
generator that reads channels in VME boards. The conflict 
arises if the remote VME bus access (channel read) is 
done while another CPU/core is performing an Interrupt-
Acknowledge cycle on the same VME bus. This condition 
is forbidden by the PCI/VME bus coupler, and 
implementing additional protection mechanisms would 
sacrifice the performance of fast acquisitions. 

PERFORMANCE 

Measurement Details 
The current ESRF standard instrumentation control 

computer is based on 4U industrial PCs with Intel Core 2 
Duo E6400 @ 2.13 GHz. The OS is RedHat EL 4 [Update 
6]; the official Linux kernel 2.6.9-67.ELsmp has not been 
modified. Measurements have been performed on that 
system with two PCI counter/timer boards, and one SBS 
Bit-3 PCI/VME bus coupler with all the supported VME 
boards mentioned before. The event generator is either a 
PCI and/or VME timer programmed in free-run (cyclic 
counting), with end-of-count (EOC) IRQ activated. 
Another counter of the same board is set to count 
microseconds, and to latch its value on timer EOC. By 
reading the running counter value as first data channel 
and then its EOC-latched value, it is possible to calculate 
the effective IRQ latency. Moreover, by specifying the 
running counter value twice consecutively in the channel 
list, the channel access time is obtained, quantifying the 
systematic component of the synchronisation error. 

Single Acquisitions 
For the first tests the VCT6 channel 1 was configured 

as free-run timer for event generation and channel 2 as a 
microseconds counter, as explained before. The Hook 
buffer was setup to store 10 channels:  

• VCT6 channel 2 running counter (read 4 times) 
• VCT6 channel 2 latch counter  
• Hook buffer 0 point index 
• Hook buffer 0 time stamp (read twice) 
• ICV150 channels 1 & 2 
The measurement results for a timer event frequency of 

5 KHz are shown in Table 1. Trying to measure at higher 
event frequencies resulted in data point lost.  

A common conclusion for all the measured magnitudes 
is their small standard deviation (SD), showing that, in 
most of the time, the Linux SMP kernel is very regular in 
scheduling. The notable difference in VCT6 and P201 
average IRQ latencies comes from the delay added by the 
PCI/VME bus coupler hardware and software layers. 

 Table 1: VCT6 IRQ Latency and Read Delays (μs) 

Magnitude Min. Ave. Max. SD 

VCT6 IRQ latency 15 24 126 0.8 

VCT6 channel read delay 0 2.5 150 0.8 

Hook channel read delay 2 3.1 22 0.7 

 
The results for the same measurements using the P201 

are shown in Table 2. Again, 5 KHz is the maximum 
readout frequency for stable acquisitions. 

 

Table 2: P201 IRQ Latency and Read Delays (μs) 

Magnitude Min. Ave. Max. SD 

P201 IRQ latency 3 4.2 105 0.6 

P201 channel read delay 0 0.9 7 0.25 

Hook channel read delay 2 3.1 26 0.7 

 

When analysing the maximum IRQ latency values, it 
should be noted that these conditions are close to the data 
sampling reliability limits. As it will be seen in the next 
section, lower sample frequencies give smaller 
differences between min./max. values. Indeed, the higher 
sample frequency, the larger amount of data per unit time 
must be transferred from kernel to user-space, and then to 
the TACO client via the Ethernet device, reducing the 
total idle times of CPUs, chipset and hardware busses.  

In this sense, IRQs shared with active devices like 
network and disk controllers are a proven source of 
instabilities. The limited number of 4 available PCI IRQs 
in standard systems makes sharing difficult to avoid. It is 
better then to choose inactive devices like embedded USB 
or graphics controllers, unused in most of our 
applications.  

It should be noted that jitter in ISR scheduling is 
important if the channels to be read are not hard 
synchronised with the event generator. This is the case of 
many encoders and ADCs. If, on the contrary, the boards 
allow data latching on hardware events, like VCT6 and 
P201 counters, this jitter does not contribute to the 
measurement error, and it is only important to guarantee 
that no point is lost by the kernel. 

Parallel Acquisitions 
It was explained before that the Hook has been 

designed to support parallel acquisitions. This can be 
useful when a monitoring process turns in the 
“background” during fast scans, or when devices with 
different speed capabilities are brought together on the 
same measurement.  

We have performed both uncorrelated and correlated 
parallel acquisitions with the VCT6 and the P201 reading 
VME and PCI channels, respectively. In the uncorrelated 
case, both timers generate IRQs at the same frequency but 
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with unlinked phase, creating both coincidence and anti-
coincidence conditions during very long scans due to the 
independence of their internal oscillators. In the second 
case, the VCT6 is the master timer and two P201 boards 
have been chained as slaves, so the VME and PCI IRQs 
synchronisation is at a sub-microsecond level. 

Unlike previous measurements, where the acquisition 
was the only running task in the system, the parallel 
uncorrelated scans have been performed under heavy 
system load. Besides the fast acquisition, the system was 
executing: 

• RedHat kernel recompilation using rpmbuild 
• Intensive network data transfer with iperf-like 

program 
• Linux root (/) partition imaging in a file on a user 

partition using basic OS tools. 
Each of these tasks was continuously executed in bash 

with the basic loop while true; do …; done. The OS load 
ranged from 2.5 – 4.5, with an average of 3.5. The 
uncorrelated statistics under these conditions are shown in 
Table 3. 

 

Table 3: IRQ Latencies (μs) in Uncorrelated Parallel Scans 
@ 1 KHz on Heavily Loaded System 

Magnitude Min. Ave. Max. SD 

VCT6 IRQ latency 14 26 80 3.0 

P201 IRQ latency 3 6 110 8.5 

 
Like in the previous cases, the tests ran for 24 hours, 

and no scan point is missing. Again, no specific tuning, or 
kernel patching has been applied; the default RedHat 
configuration with the CONFIG_PREEMPT=no kernel 
option has been kept. 

The correlated measurements were performed on an 
unloaded system to double the scan rate. Table 4 shows 
the corresponding results. 

 

Table 4: IRQ Latencies (μs) in Correlated Parallel Scans  
@ 2 KHz on Unloaded System (2x P201) 

Magnitude Min. Ave. Max. SD 

VCT6 IRQ latency 14 25 70 1.6 

2nd P201 IRQ latency 45 50 104 2.0 

 
The shift in the P201 IRQ latency comes from the fact 

that it is measured on the second board, on a different PCI 
slot that shares IRQ with a larger number of devices. 

DEPLOYMENT AT THE ESRF 
The Linux 2.6 Hook interface has been in production on 

ID31 Powder Diffraction ESRF BL for more than one 
year. It is the core of the BL experiments, which are 
normally carried out between 60 – 300 Hz sample rates (3 
– 15 ms). System instabilities have been completely fixed 
during this time, including vulnerabilities against crashes 

of the remote BL control workstation. It is planned to be 
deployed to the other of ESRF BLs that use fast scans 
during the next long shutdown, in the framework of a 
global SuSE 7.2 → RedHat EL 4 migration campaign. 

CONCLUSIONS 
A generic kernel Hook interface, providing fast 

software trigger and scalar data buffering, has been ported 
to Linux 2.6. Good performance results are obtained with 
standard (non real time) RedHat EL 4 kernels running on 
mid-level dual-core CPUs. Up to two parallel, 
uncorrelated acquisitions can be performed at 1 KHz on 
heavily loaded systems without data lost. Support to /sys 
virtual file-system provides useful information for Hook 
configuration, monitoring and debugging. The new 
module has been in production at the ESRF for more than 
one year; its deployment to the rest of ESRF BLs is 
foreseen soon. 

ACKNOWLEDGEMENTS 
The author wants to thank F. Sever, M. Perez, E. 

Papillon, G. Berruyer, J.M. Clement and H. Gonzalez 
from the Instrumentation Services and Development 
Division (ISDD) at the ESRF for their support, help and 
useful discussions during the development of this work. 

REFERENCES 
[1] A. Homs-Purón, D. Beltrán, A. Beteva, M. C. 

Domínguez, P. Fajardo, A. Götz, J. Klora, E. 
Papillon, M. Pérez, V. Rey, “Linux/PCI: The ESRF 
Beamline Control System Modernisation”, 
ICALEPCS’03, Gyeongju,  October 2003, MP565, p. 
162 (2003), http://www.JACoW.org. 

[2] A. Homs, F. Sever, “Generic VME Interface for 
Linux 2.6 Kernels”, PCaPAC’08, Ljubljana, October 
2008, TUP001, p. 77 (2008),  
http://www.JACoW.org. 

[3] SPEC - X-Ray Diffraction and Data Acquisition 
Software, G. Swislow, Certified Scientific Software, 
http://www.certif.com 

WEPMN027 Proceedings of ICALEPCS2011, Grenoble, France

946C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software


