
FAST SCALAR DATA BUFFERING INTERFACE
IN LINUX 2.6 KERNEL

A. Homs#, ESRF, Grenoble, France.

Abstract
Key instrumentation devices like counter/timers,

analog-to-digital converters and encoders provide scalar
data input. Many of them allow fast acquisitions, but do
not provide hardware triggering or buffering mechanisms.
A Linux 2.4 kernel driver called Hook was developed at
the ESRF as a generic software-triggered buffering
interface. This work presents the portage of the ESRF
Hook interface to the Linux 2.6 kernel. The interface
distinguishes two independent functional groups: trigger
event generators and data channels. Devices in the first
group create software events, like hardware interrupts
generated by timers or external signals. On each event,
one or more device channels on the second group are read
and stored in kernel buffers. The event generators and
data channels to be read are fully configurable before
each sequence. Designed for fast acquisitions, the Hook
implementation is well adapted to multi-CPU systems,
where the interrupt latency is notably reduced. On heavily
loaded dual-core PCs running standard (non real time)
Linux, data can be taken at 1 KHz without losing events.
Additional features include full integration into the /sys
virtual file-system and hot-plug devices support.

INTRODUCTION
Many scientific experiments carried out at the ESRF

beamlines (BL) are based on the scan concept, where the
evolution in time of one or more magnitudes is measured,
typically while scanning the values of one or more
parameters. Two modes of scan execution are identified.
In “step-by-step mode”, scan steps and measurements are
performed sequentially (parameter change does not
overlap in time with detector integration), starting and
stopping the involved hardware at each point. In
“continuous mode”, both scan and measurement are
executed in parallel, increasing the duty cycle of the X-
ray beam utilisation, and/or notably reducing the total
scan duration. As a drawback, time errors in the
synchronisation of the readout of all the involved
magnitudes affect the precision of the continuous scan.

 Initial support to continuous mode at the ESRF was
based on a “soft” synchronisation. In the first versions, a
scan loop sequentially read, as fast as possible, motors
and counters in a VME crate from a remote control
workstation. The next approach read all these scan
magnitudes sequentially inside a program running in the
VME crate, removing the network from the sources of
synchronisation error. A third performance improvement
used a combination of hard and soft synchronisations. A
hardware event triggered an interrupt request (IRQ), and
during its IRQ service routine (ISR) all the scan scalar

parameters (implemented as registers in instrumentation
boards) were read and stored in a kernel buffer.

This IRQ Hook mechanism, originally developed in
OS/9, was extended in Linux 2.2 [1] and 2.4 kernels with
a flexible configuration interface. A dedicated TACO
device server allowed the configuration and reading of the
kernel buffer by the BL control program, running on the
same PC or on a remote workstation.

In the migration of the VME and PCI instrumentation
control at the ESRF to Linux 2.6, the new kernel device
abstraction was extensively used [2]. In particular, a
robust VME infrastructure was developed for Symmetric-
Multi-Processor (SMP) environments, supporting device
hot-plug functionality.

HOOK INTERFACE

Device Abstraction
Virtually all the common instrumentation hardware

providing scalar parameters can fit in the simple
device/channel concept. A hardware unit (VME/PCI
board, serial line/GPIB/Ethernet instrument) is considered
in this context a device. It groups control registers or
commands, and exports one or more scalar channels. In
addition, a device can generate events, typically hardware
IRQs or operating system (OS) signals. These events are
used in the Hook structure to trigger the readout of an
arbitrary set of channels (belonging to the same and/or
other devices), which are recorded in dedicated buffers.

Like its Linux 2.4 predecessor, the Hook interface is
seen as a “kernel service” that instrumentation drivers
register to using their names. This interface has been
completely redesigned in Linux 2.6 to explicitly
distinguish device, event, and channel structures. The
same kernel “device” concept already identified by those
drivers by a major:minor pair, like a specific PCI board
structure associated to a kernel pci_dev, can contain an
analogue hook_dev structure. Each hook_dev is the parent
of a group of hook_chan and/or hook_event structures,
depending of the board functionality.

Once all hook_devs, with their hook_events and
hook_chans, are registered at drivers’ start-up, they are
ready to be used. The “user” side of the Hook “service”
configures for an acquisition (Hook buffer) the event
generator and the data channels to be read at each event.
The event setup is performed through the board-specific
drivers because of its complex nature. As a result of this
setup, the event generator’s driver installs the hook_event
on the specified Hook buffer. The data channel setup is
performed through the Hook driver interface, by using a
list of <drv_name, minor, chan_idx> triplets that reference
the channels to store on the buffer. __

#alejandro.homs@esrf.fr

Proceedings of ICALEPCS2011, Grenoble, France WEPMN027

Embedded + realtime software 943 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Each hook_chan has an associated hook_chan_functs;
the structure defining the methods that carry out its
specific functionality. During buffer channel setup a
prepare method is called for each selected channel to
perform its hardware initialisation. If it succeeds, the
board driver module is locked to avoid to be removed
from the kernel, and the hook_chan_functs.lock method is
called to notify the board driver that the channel is in use.
On each point the event generator driver calls the Hook
interface, and the read method is called for all the
involved hook_chans to trigger their readout. In case the
channel value is not available immediately (it is called in
kernel interrupt context), the read method can return a
delayed completion request. Two solutions are identified
in such a condition: asynchronous response or “read-
before-next”. In the former, the board driver is
responsible of calling an asynchronous buffer write Hook
function once the value is ready. The latter is requested if
the driver does not provide asynchronous events; it can
only ensure that the value will ready before the next
event. Then, the read_before_next method is called to
retrieve the previous channel value. Upon acquisition end
the unlock method is called to release the channel.

A device can have channels of different classes, and
hence have different set of methods, which might be the
case of a multi-purpose counter/timer, analogue and
digital I/O PCI board.

The current Hook implementation is Linux 2.6 kernel is
limited to VME and PCI boards, which generate hardware
IRQs and can be controlled by standard I/O operations.
Communication-based devices using serial line, GPIB or
Ethernet interfaces are not covered (yet). This limitation
is due to both the complexity in accessing these platforms
from the kernel interrupt context and the latency normally
associated to those instruments. Nevertheless, Linux 2.6
kernels are so flexible and well structured that the support
of those interfaces would be, in principle, possible.

Buffer Functionality
As we have seen, a fast acquisition involves an event

generator, a set of data channels and a kernel buffer.
Multiple acquisitions, each with its own buffer, can be
performed in parallel on the same PC; they might share
data channels if the prepare and lock methods’
implementations allow it. The Hook driver creates 5
buffers by default, but this can be changed at module load
time.

Two buffer filling modes are implemented: linear,
where the acquisition stops once the buffer is full; and
circular, where a ring buffer is implemented and data
must be read continuously to not get overwritten. Data
overrun is not considered a fatal error, but it is always
reported.

In addition to kernel memory allocation and
management, each Hook buffer is in turn a hook_dev. In
this sense it exports two hook_chans: the point index and
elapsed time in microseconds, both measured since the
beginning of the acquisition. These two values are very
important to determine if an event has been lost, either by

the kernel (elapsed time between adjacent points higher
than expected) or by the user-space program reading
buffers (discontinuity in point index). Each buffer also
exports a hook_event: a Linux software timer, whose
period can be set with a time resolution given by the
kernel HZ timer frequency (HZ=1000 in RedHat EL 4: 1
ms resolution).

A simple user-space library allows to configure the
kernel interface and to read the buffer contents in an
efficient way. As mentioned before, a TACO server on top
of the library allows clients like SPEC [3], the central BL
control application, to retrieve the data on the buffers. For
ring-buffer acquisitions with intervals below 1 ms, the
readout must be performed continuously due to the
limited length of kernel buffers. For these fast
acquisitions, the TACO server provides a bigger, user-
space buffer and an auxiliary thread to empty the kernel
buffer accordingly. This relaxes the time constrains of the
remote SPEC main acquisition loop.

Virtual sysfs Support
The Linux 2.6 /sys virtual file-system gives a useful

user-space visibility of kernel structures. The class
interface is used in the Hook to export information about
the registered elements, replicating its tree structure of
hook_drv, hook_dev, hook_chan and hook_event. In this
direction, additional read_desc methods in hook_chan and
hook_event are foreseen to provide a human-readable
description through /sys interface.

The Hook driver allows code tracing and debugging
through messages on the standard kernel syslog interface.
However, this is far from optimal for very fast
acquisitions. In order to provide real time status to user
space, the /sys interface also publishes the instantaneous
buffer information. It includes buffer setup (size, filling
mode, list of channels) and buffer state (total number of
events, number of points to be read and elapsed time since
start).

IMPLEMENTATION

Supported Hardware
The standard ESRF BL instrumentation PCI and VME

boards used for fast acquisition has been ported to the
Linux 2.6 Hook structure:

• ESRF PCI P201 Counter/Timer
• ESRF VME VCT6 Counter/Timer
• Compcontrol CC133 Incremental Encoder
• ADAS ICV150 Analog-to-Digital Converter (ADC)
The first two boards implement both data channels and

event generators; the last two only export data channels.

SMP and VME Issues
Linux 2.6 gives an improved support to hot-plug

dynamics, that is, devices that can appear and disappear
without system control. This is the case of VME devices
connected to PCI/VME bus couplers; if the remote crate
is disconnected the corresponding VME devices no longer
exist on the system. It becomes an important issue in SMP

WEPMN027 Proceedings of ICALEPCS2011, Grenoble, France

944C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

systems, because one or more CPU/cores could be
referring to one device while another is trying to delete it.
Such situation is even more critical in the Hook
environment, which works on interrupt context and the
system can immediately hang on invalid operations.
Special care has been taken to protect all the data
structures against these different situations.

Nevertheless, some crashes or conflicts are unavoidable
if performance must be kept as first design priority. One
example is found on scans with a PCI IRQ-based event
generator that reads channels in VME boards. The conflict
arises if the remote VME bus access (channel read) is
done while another CPU/core is performing an Interrupt-
Acknowledge cycle on the same VME bus. This condition
is forbidden by the PCI/VME bus coupler, and
implementing additional protection mechanisms would
sacrifice the performance of fast acquisitions.

PERFORMANCE

Measurement Details
The current ESRF standard instrumentation control

computer is based on 4U industrial PCs with Intel Core 2
Duo E6400 @ 2.13 GHz. The OS is RedHat EL 4 [Update
6]; the official Linux kernel 2.6.9-67.ELsmp has not been
modified. Measurements have been performed on that
system with two PCI counter/timer boards, and one SBS
Bit-3 PCI/VME bus coupler with all the supported VME
boards mentioned before. The event generator is either a
PCI and/or VME timer programmed in free-run (cyclic
counting), with end-of-count (EOC) IRQ activated.
Another counter of the same board is set to count
microseconds, and to latch its value on timer EOC. By
reading the running counter value as first data channel
and then its EOC-latched value, it is possible to calculate
the effective IRQ latency. Moreover, by specifying the
running counter value twice consecutively in the channel
list, the channel access time is obtained, quantifying the
systematic component of the synchronisation error.

Single Acquisitions
For the first tests the VCT6 channel 1 was configured

as free-run timer for event generation and channel 2 as a
microseconds counter, as explained before. The Hook
buffer was setup to store 10 channels:

• VCT6 channel 2 running counter (read 4 times)
• VCT6 channel 2 latch counter
• Hook buffer 0 point index
• Hook buffer 0 time stamp (read twice)
• ICV150 channels 1 & 2
The measurement results for a timer event frequency of

5 KHz are shown in Table 1. Trying to measure at higher
event frequencies resulted in data point lost.

A common conclusion for all the measured magnitudes
is their small standard deviation (SD), showing that, in
most of the time, the Linux SMP kernel is very regular in
scheduling. The notable difference in VCT6 and P201
average IRQ latencies comes from the delay added by the
PCI/VME bus coupler hardware and software layers.

 Table 1: VCT6 IRQ Latency and Read Delays (μs)

Magnitude Min. Ave. Max. SD

VCT6 IRQ latency 15 24 126 0.8

VCT6 channel read delay 0 2.5 150 0.8

Hook channel read delay 2 3.1 22 0.7

The results for the same measurements using the P201

are shown in Table 2. Again, 5 KHz is the maximum
readout frequency for stable acquisitions.

Table 2: P201 IRQ Latency and Read Delays (μs)

Magnitude Min. Ave. Max. SD

P201 IRQ latency 3 4.2 105 0.6

P201 channel read delay 0 0.9 7 0.25

Hook channel read delay 2 3.1 26 0.7

When analysing the maximum IRQ latency values, it
should be noted that these conditions are close to the data
sampling reliability limits. As it will be seen in the next
section, lower sample frequencies give smaller
differences between min./max. values. Indeed, the higher
sample frequency, the larger amount of data per unit time
must be transferred from kernel to user-space, and then to
the TACO client via the Ethernet device, reducing the
total idle times of CPUs, chipset and hardware busses.

In this sense, IRQs shared with active devices like
network and disk controllers are a proven source of
instabilities. The limited number of 4 available PCI IRQs
in standard systems makes sharing difficult to avoid. It is
better then to choose inactive devices like embedded USB
or graphics controllers, unused in most of our
applications.

It should be noted that jitter in ISR scheduling is
important if the channels to be read are not hard
synchronised with the event generator. This is the case of
many encoders and ADCs. If, on the contrary, the boards
allow data latching on hardware events, like VCT6 and
P201 counters, this jitter does not contribute to the
measurement error, and it is only important to guarantee
that no point is lost by the kernel.

Parallel Acquisitions
It was explained before that the Hook has been

designed to support parallel acquisitions. This can be
useful when a monitoring process turns in the
“background” during fast scans, or when devices with
different speed capabilities are brought together on the
same measurement.

We have performed both uncorrelated and correlated
parallel acquisitions with the VCT6 and the P201 reading
VME and PCI channels, respectively. In the uncorrelated
case, both timers generate IRQs at the same frequency but

Proceedings of ICALEPCS2011, Grenoble, France WEPMN027

Embedded + realtime software 945 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

with unlinked phase, creating both coincidence and anti-
coincidence conditions during very long scans due to the
independence of their internal oscillators. In the second
case, the VCT6 is the master timer and two P201 boards
have been chained as slaves, so the VME and PCI IRQs
synchronisation is at a sub-microsecond level.

Unlike previous measurements, where the acquisition
was the only running task in the system, the parallel
uncorrelated scans have been performed under heavy
system load. Besides the fast acquisition, the system was
executing:

• RedHat kernel recompilation using rpmbuild
• Intensive network data transfer with iperf-like

program
• Linux root (/) partition imaging in a file on a user

partition using basic OS tools.
Each of these tasks was continuously executed in bash

with the basic loop while true; do …; done. The OS load
ranged from 2.5 – 4.5, with an average of 3.5. The
uncorrelated statistics under these conditions are shown in
Table 3.

Table 3: IRQ Latencies (μs) in Uncorrelated Parallel Scans
@ 1 KHz on Heavily Loaded System

Magnitude Min. Ave. Max. SD

VCT6 IRQ latency 14 26 80 3.0

P201 IRQ latency 3 6 110 8.5

Like in the previous cases, the tests ran for 24 hours,

and no scan point is missing. Again, no specific tuning, or
kernel patching has been applied; the default RedHat
configuration with the CONFIG_PREEMPT=no kernel
option has been kept.

The correlated measurements were performed on an
unloaded system to double the scan rate. Table 4 shows
the corresponding results.

Table 4: IRQ Latencies (μs) in Correlated Parallel Scans
@ 2 KHz on Unloaded System (2x P201)

Magnitude Min. Ave. Max. SD

VCT6 IRQ latency 14 25 70 1.6

2nd P201 IRQ latency 45 50 104 2.0

The shift in the P201 IRQ latency comes from the fact

that it is measured on the second board, on a different PCI
slot that shares IRQ with a larger number of devices.

DEPLOYMENT AT THE ESRF
The Linux 2.6 Hook interface has been in production on

ID31 Powder Diffraction ESRF BL for more than one
year. It is the core of the BL experiments, which are
normally carried out between 60 – 300 Hz sample rates (3
– 15 ms). System instabilities have been completely fixed
during this time, including vulnerabilities against crashes

of the remote BL control workstation. It is planned to be
deployed to the other of ESRF BLs that use fast scans
during the next long shutdown, in the framework of a
global SuSE 7.2 → RedHat EL 4 migration campaign.

CONCLUSIONS
A generic kernel Hook interface, providing fast

software trigger and scalar data buffering, has been ported
to Linux 2.6. Good performance results are obtained with
standard (non real time) RedHat EL 4 kernels running on
mid-level dual-core CPUs. Up to two parallel,
uncorrelated acquisitions can be performed at 1 KHz on
heavily loaded systems without data lost. Support to /sys
virtual file-system provides useful information for Hook
configuration, monitoring and debugging. The new
module has been in production at the ESRF for more than
one year; its deployment to the rest of ESRF BLs is
foreseen soon.

ACKNOWLEDGEMENTS
The author wants to thank F. Sever, M. Perez, E.

Papillon, G. Berruyer, J.M. Clement and H. Gonzalez
from the Instrumentation Services and Development
Division (ISDD) at the ESRF for their support, help and
useful discussions during the development of this work.

REFERENCES
[1] A. Homs-Purón, D. Beltrán, A. Beteva, M. C.

Domínguez, P. Fajardo, A. Götz, J. Klora, E.
Papillon, M. Pérez, V. Rey, “Linux/PCI: The ESRF
Beamline Control System Modernisation”,
ICALEPCS’03, Gyeongju, October 2003, MP565, p.
162 (2003), http://www.JACoW.org.

[2] A. Homs, F. Sever, “Generic VME Interface for
Linux 2.6 Kernels”, PCaPAC’08, Ljubljana, October
2008, TUP001, p. 77 (2008),
http://www.JACoW.org.

[3] SPEC - X-Ray Diffraction and Data Acquisition
Software, G. Swislow, Certified Scientific Software,
http://www.certif.com

WEPMN027 Proceedings of ICALEPCS2011, Grenoble, France

946C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

