
RECENT DEVELOPMENTS IN SYNCHRONISED MOTION CONTROL AT
DIAMOND LIGHT SOURCE

B. Nutter, T. Cobb, M. Pearson, N. Rees, F. Yuan, Diamond Light Source, Oxfordshire, UK

Abstract
At Diamond Light Source the Experimental Physics

and Industrial Control System (EPICS) [1] is used with a
variety of motion controllers. The use of EPICS ensures a
common interface over a range of motorised applications.
We have developed a system to enable the use of the
same interface for synchronised motion over multiple
axes using the Delta Tau Programmable Multi Axis
Controller (PMAC). Details of this work will be
presented, along with an example and possible future
developments.

INTRODUCTION
Diamond Light Source is host to around twenty

operational X-ray beamlines, each of which has various
motorised devices in order to control and focus X-ray
photons. These devices range from simple diagnostics and
attenuators, to mirrors and double crystal
monochromators, and complex multi-axis diffractometers
and hexapod systems. There can be well over one
hundred motors on a photon beamline, from simple
stepper motors to servo motors, piezo motors and nano
motors.

The control of motors is accomplished by using
dedicated motor controllers that typically operate a servo
control loop and amplifier for each axis. On top of this we
have motor control software that sends commands to the
controllers and reads back status information. At the
highest level we make use of the EPICS control system
and the Generic Data Acquisition (GDA) scientific
framework [2] to provide a consistent user interface to
each type of motor.

In addition to the standard control of each axis we
perform synchronised motion on multiple axes. We do
this at various levels, such as sending simultaneous move
commands from the high level software, or defining a co-
ordinate system at the motor controller level (which lets
us achieve true synchronised motion).

MOTION CONTROL HARDWARE IN USE
AT DIAMOND

Diamond Phase I beamlines use the Delta Tau Turbo
PMAC 2 VME Ultralight motor controller. This is a 32-
axis controller which sits inside a VME crate alongside a
CPU card running VxWorks and EPICS. The Ultralight
controller uses a fibre optic communication link to two
16-axis Universal Motion and Automation Controller
(UMAC) units, which in turn interface to limit switches,
encoders and external amplifier crates.

At the end of Phase I Diamond underwent a tender
process for Phase II beamline motion controllers. It was
determined that the use of Ethernet-based controllers

would be a more flexible and economic alternative than
the traditional VME-based controller. The controller we
chose was the Delta Tau Geobrick Low Voltage Integrated
Motion System (LV IMS). This is a Turbo PMAC 2
controller in a 4U enclosure, with an integrated amplifier
board. The amplifier board has 4 or 8 axes of output, each
of which can be configured in software to be either a
stepper or a servo amplifier. This made it possible not
only to control DC stepper motors, with various encoder
feedback mechanisms, but also to control brushless and
DC servo motors. Step and direction outputs are also
available to control pico motors and ultra-high resolution
external stepper amplifiers.

The product has suffered somewhat from early design
teething troubles, mainly concerning the amplifier
firmware. However, all solutions to date have been
compatible with the existing hardware platform. We are
also seeing an increasing number of very small motors,
typically below 500mA, and the current resolution of the
Geobrick amplifiers (which are rated at 5A continuous,
15A peak, but have a zero current set point accuracy of
nearly 100mA) is becoming an issue.

Diamond has a number of other motor controllers on
site. These include the Newport XPS controller, mainly
used on Newport diffractometers, and a small number of
Aerotech Ensemble controllers, required to take
advantage of the smoothness and precision of their inbuilt
linear amplifier stages. We also have many piezo stack
control devices from Queensgate, PI and Jena, which are
controlled by either analogue signals or RS232.

EPICS MOTOR CONTROL SOFTWARE
For each specific motor controller there is a software

driver based on the Asyn software framework [3]. Asyn is
a low-level driver software abstraction framework,
providing synchronous and asynchronous commands and
responses. The drivers are either developed in house
(normally building on the work of similar drivers) or use
is made of drivers developed elsewhere. Above these
drivers is a consistent user interface in the form of an
EPICS record, called the Motor Record. This provides the
user with functions such as move, stop, home, etc., as well
as support for modifying the motion properties such as
velocity or acceleration. The EPICS Motor Record is
documented in full at [4].

The Asyn-based motor driver framework that sits
underneath the EPICS motor record has been developed
by Diamond and the Advanced Photon Source, and has
been previously been presented [5]. The advantages that
the driver framework gives us are mainly the ease of
adding new drivers for new controllers, the ability to use
multiple EPICS records to control a motor and its

Proceedings of ICALEPCS2011, Grenoble, France WEPMN013

Embedded + realtime software 901 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

parameters and the ability to monitor a motor status
asynchronously (by using an event driven polling thread).

GDA SOFTWARE INTERFACE TO EPICS
MOTOR SOFTWARE

The GDA is a data acquisition system developed at
Diamond to provide a user interface and experiment
platform for Diamond beamline users. It has a client-
server architecture and includes support for the EPICS
channel access protocol. A Java implementation of the
EPICS channel access protocol, called Channel Access
for Java (CAJ) [6], is used to provide both synchronous
and asynchronous communication with EPICS. When
configuring the GDA for a beamline, the EPICS motor
record name is obtained dynamically from an EPICS-
GDA interface XML file, generated during EPICS build
and deployment, to ensure consistency between the two
systems.

Motor objects in GDA are designed to be in state
synchronisation with the underlying EPICS motor record
to support the simultaneous use of GDA and EDM (an
EPICS-aware Motif-based graphical toolkit called
Extensible Display Manager [7]). Access control of
EPICS motors is also supported, and can be used to
restrict access to particular devices such as insertion
devices or front end motors.

Beamline users normally collect data and access EPICS
motors using the GDA scan mechanism. This is a very
flexible framework capable of capturing a complete data
set in experiments, including metadata such as beam
conditions and sample environments. It allows users to
move motors in multiple dimensions, typically from a
start position to an end position in predefined steps, and to
collect arbitrary data during a scan.

COORDINATED MOTION SOFTWARE
We have been able to achieve co-ordinated multi axis

motion in several ways:
• Sending simultaneous move commands to multiple

axes at a high level, using GDA to control multiple
motor records. An example of this is slit scanning,
where the GDA performs its own calculations for slit
gap and centre positions. This is achieved by creating
a GDA object to represent the combined motor axes.
The object can then be used by the GDA scan
mechanism.

• Sending simultaneous move commands to multiple
axes at the EPICS level. A set of EPICS records
work together to calculate combined motion and
send the move commands one-by-one to the motor
records. This is similar to the GDA-based
mechanism, except in this case the GDA only knows
about one EPICS motor record, for example a slit
gap ‘motor’.

• Using ‘deferred moves’. This is a technique that
involves the driver queuing up move commands and
sending them all at once to the motor controller. This
technique is useful if one is attempting to move

multiple axes that are ‘grouped’ together on the
motor controller itself. When axes are grouped
together, an axis can go into the ‘moving’ state when
we are actually only moving a different axis. This
causes an issue when using the EPICS motor record
and attempting to drive two axes by sending separate
commands, because, to avoid ambiguity, EPICS
needs the motor to be idle before the move starts if
the client also wants to be notified asynchronously of
the move completion. In effect, the motor record
does not permit a move to be sent while an axis is
already in motion (unless the previous move is
stopped first). Deferred moves are a way around this
issue, and provide a greater degree of move
synchronisation than can be achieved by using high
level software alone.

• Making use of the coordinated motion capabilities of
the controller, and defining a ‘coordinate system’ for
multiple axes.

We will expand on the 4th option. On the PMAC
controller, this method involves setting up the axes in a
co-ordinate system, which means defining forward and
inverse kinematic calculations and defining a PMAC PLC
program to provide combined axis position read-back. An
example for a pair of slits is shown in Figure 1.

&2
#1->I
#2->I
OPEN FORWARD
CLEAR
Q1=(P1+P2)/2
Q2=P1-P2
CLOSE

OPEN INVERSE
CLEAR
P1=Q1+Q2/2
P2=Q1-Q2/2
CLOSE

Figure 1: PMAC forward and inverse kinematics.

In Figure 1 the notation &2 defines co-ordinate system
number 2, and the #1->I means that axis 1 will be placed
in that co-ordinate system. The Q1 and Q2 variables are
from the PMAC ‘Q-variable’ range on the PMAC which
have co-ordinate system scope. Here we are using Q1 and
Q2 to represent the combined motion. P1 and P2 are used
to represent the real axis position, based on the forward
kinematics. We also need to define a PLC program to
calculate the real combined motion positions, and this is
used for position read-back by the EPICS driver.

OPEN PLC 2
CLEAR
Q81= (m162 + m262)/2 ;real center
Q82= (m162 – m262) ;real gap size
CLOSE

Figure 2: Position readback PMAC PLC program.

WEPMN013 Proceedings of ICALEPCS2011, Grenoble, France

902C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

In Figure 2 we are using Q81 and Q82 to hold the
combined motion positions, calculated from the actual
motor positions held by the PMAC (which are the mX62
variable, where the X is the axis number). In the above
examples we have omitted scale factors, which are
required to convert to and from engineering units and
PMAC position ‘counts’. We need to define a PLC
program such as this in order to provide real combined
axis position read-back, because the P1 and P2 variables
are specific to the kinematic buffer.

Finally, there is also a PMAC motion program, which
is executed whenever a combined motion command is
sent to the controller. The motion program then makes
use of the co-ordinate system, which we defined above.

The EPICS driver for the PMAC has been modified to
support the functionality we have described above. There
is a coordinate system driver that writes combined motion
demand values into Q-variables on the PMAC and
executes the motion program on the PMAC. It also reads
the Q-variables from the PLC program in order to obtain
the position for the combined axes.

This is implemented in the EPICS co-ordinate driver in
the motorAxisMove function. It is accomplished by
sending three commands to the controller:

• Write new demand values into the appropriate Q-

variables for the coordinate system
• Abort the current move (to ensure that the axes are

enabled)
• Run the motion program

In the co-ordinate system driver there is a separate

thread which polls the actual combined motion axis
positions (provided by the PLC program described
above). This provides continuous position updates to the
motor record, at a configurable rate (typically 10 or
20Hz).

The EPICS coordinate system driver fits into the same
asyn motor framework as the existing drivers, and so can
be used with the same EPICS motor record code. This
means that we have a consistent user interface to both real
axes and combined coordinated axes. The PMAC co-
ordinate system driver is packaged with the tpmac EPICS
support module [8], or is available stand-alone as the
pmacAsynCoord module.

DIAMOND STANDARDS FOR DELTA TAU
PMAC DEVELOPMENT

The coordinated PMAC driver does make some
assumptions about how the PMAC co-ordinate system has
been set up. For example, it assumes that the PLC read-
back positions will be stored in the variables Q81 to Q89.
In order to ensure that PMAC software development is
kept in sync with the EPICS driver we developed a set of
PMAC programming standards, both for co-ordinate
systems and general purpose PMAC PLC programs.
These programming guidelines have been written down
and we routinely forward them onto equipment suppliers

who develop PMAC motion control systems for us. They
also serve as a useful guide within the group when we
develop new PMAC software. We hope that these
standards will be useful to other EPICS sites that are
using PMAC controllers, as this will ensure the PMAC
co-ordinate system driver will be applicable outside
Diamond.

A selection of the standards we have developed is
described here. First, we list the reserved PLC program
numbers and their intended use in Fig.3.

PLC1 initialization routines
PLC2 motion stop detection
PLC3 amplifier enable routine
PLC4 encoder loss detection
PLC5 CPU use reporting
PLC6 amplifier setup
PLC7 auto amplifier power off

Figure 3: Reserved PLC numbers and their function.

PLCs 8 to 16 are free for application-specific code and
PLCs 17 to 31 are reserved for co-ordinate system
position reporting (as described in this paper). In order to
avoid conflicts PLCxx (where xx is the PLC number)
should only use PMAC P-variables (which have global
scope) in the Pxx00 to Pxx99 range.

Motion programs and co-ordinate systems should use
Q-variables where possible, and only use P-variables in
the range P3200 to P4200 (to avoid conflicting with PLC
programs). For co-ordinate systems we reserve the
following Q-variable ranges:

• Q71 to Q79 – co-ordinate system demand positions.
• Q81 to Q89 – co-ordinate system readback positions

(these are the positions calculated by the position
reporting PLC program).

• Q400 to Q439 – backlash compensation settings in
coordinate systems.

In addition to the above, Delta Tau reserve various
variable ranges for their own use. We also document
various PMAC programming guidelines, such as best
practice for developing a homing PLC program. For
example it is bad practice to disable limit switches during
a homing program, in case the program fails and therefore
fails to re-enable the limit switches.

CONCLUSION AND FUTURE
DEVELOPMENTS

Significant progress has been made with the new Delta
Tau Geobrick controller on the final Phase II beamlines.
On most beamlines we have deployed PMAC co-ordinate
systems to drive combined motion systems such as
mirrors and slits. We have found this to be very reliable
and to provide true synchronised motion at the controller
level.

Proceedings of ICALEPCS2011, Grenoble, France WEPMN013

Embedded + realtime software 903 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Further work is planned on the EPICS PMAC driver to
provide support for trajectory scanning. Eventually we are
aiming to have a consistent trajectory scanning interface
that is controller- and driver-independent, similar to the
existing abstract interface that the motor record provides
for standard axis motion.

REFERENCES
[1] http://www.aps.anl.gov/epics/
[2] http://www.opengda.org/
[3] http://www.aps.anl.gov/epics/modules/soft/asyn/
[4] http://www.aps.anl.gov/bcda/synApps/motor/
[5] N.P. Rees, P. N. Denison, T. M. Cobb,

“Development of Photon Beamline and Motion
Control Software at Diamond Light Source”,
ICALEPCS 2007, Knoxville, Tennessee, USA.

[6] http://epics-jca.sourceforge.net/caj/
[7] http://ics-web.sns.ornl.gov/edm/
[8] http://www.gmca.anl.gov/TPMAC2/index.html

WEPMN013 Proceedings of ICALEPCS2011, Grenoble, France

904C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

