
COMMERCIAL FPGA BASED MULTIPURPOSE CONTROLLER:
IMPLEMENTATION PERSPECTIVE∗

I. Arredondo, M. del Campo, P. Echevarria, D. Belver,
L. Muguira, N. Garmendia, H. Hassanzadegan, M. Eguiraun, ESS-Bilbao, Spain

J. Jugo, V. Etxebarria, University of the Basque Country, Leioa, Spain

Abstract

This work presents a fast acquisition multipurpose con-
troller, focussing on its EPICS integration and on its XML
based configuration. This controller is based on a Lyrtech
VHS-ADC board which encloses an FPGA, connected to
a Host PC. This Host acts as local controller and imple-
ments an IOC integrating the device in an EPICS network.
These tasks have been performed using Java as the main
tool to program the PC to make the device fit the desired
application. All the process includes the use of different
technologies: JNA to handle C functions i.e. FPGA API,
JavaIOC to integrate EPICS and XML w3c DOM classes to
easily configure the particular application. In order to man-
age the functions, Java specific tools have been developed:
Methods to manage the FPGA (read/write registers, acquire
data, . . .), methods to create and use the EPICS server (put,
get, monitor, . . .), mathematical methods to process the
data (numeric format conversions, . . .) and methods to cre-
ate/initialize the application structure by means of an XML
file (parse elements, build the DOM and the specific appli-
cation structure). This XML file has some common nodes
and tags for all the applications: FPGA registers specifica-
tions definition and EPICS variables. This means that the
user only has to include a node for the specific application
and use the mentioned tools. A main class is in charge of
managing the FPGA and EPICS server according to this
XML file. This multipurpose controller has been success-
fully used to implement a BPM and an LLRF application
for the ESS-Bilbao facility.

INTRODUCTION

The utilization of the same hardware for the implemen-
tation of several applications has some advantages such as,
the knowledge of how it works, its limitations, an easier
maintenance and development of new tools.

Normally each piece of hardware has its own purpose
but with the popularization of FPGAs the hardware has be-
come reconfigurable. The development of an FPGA based
hardware could take a long time and, therefore, the utiliza-
tion of commercial hardware is beneficial. This choice con-
tributes with a fast implementation and reliability, because
commercial hardware is, usually, well tested.

In this work the VHS-ADC board of Lyrtech company
[1], combined with a PC are used to design a multipurpose
controller focusing their function on particle accelerators
applications.

∗ iarredondo@essbilbao.org

In particle accelerators the most of the devices have to
be connected to a central network to be controlled or mon-
itored via the facility’s standard middleware. Concretely in
this paper EPICS [2] is implemented.

On the other hand, and following with the idea of the
fast implementation and easy maintenance, it is important
to provide some tools to make easier to the programmer the
implementation of each application and to allow the user
configuring the hardware without the necessity of program-
ming. Therefore, some libraries have been designed to help
the programmer and XML language has been chosen to in-
teract with the user.

There are two main processes which are performed in
the applications: Monitor and Control. Monitoring process
is summarized in read data from the experiment with the
hardware, access to this information and publish it on the
network. On the other hand, the process of control can
be described as a monitoring process with the possibility
of interacting with the experiment. This is performed by
changing a parameter, sending it through the network to a
hardware controller and write it in the hardware.

In the following sections it will be described how to do
the implementation of these two processes in a reconfig-
urable way with a minimal programming by the final user.

SYSTEM OVERVIEW

The main idea of the system is to use a commercial
FPGA, the VHS-ADC board of Lyrtech company, to man-
age different applications related to control and monitor
processes and data logging in large facilities. To drive the
FPGA, a Host PC is utilized. This PC implements the
Hardware Controller (HC) which is the link between the
FPGA and the user.

The structure of the system is depicted in Figure 1. The
instrument under control is connected to the Lyrtech board
which is linked to the Host PC via a cPCI port. The HC
reads and writes parameters from and to the FPGA’s regis-
ters and publishes them over the network by means of an
EPICS server. Then, EPICS clients can use the data and
change the control parameters.

The structure of the conceptual programming is the fol-
lowing: Acquisition, fast calculations and real-time process
are handled by the FPGA while slow or heavy calculations,
data logging and EPICS related functions are performed in
the HC.

WEPMN006 Proceedings of ICALEPCS2011, Grenoble, France

882C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

AD

DA

FPGA cPCI

Read

Write Get

Put
Out

In

Instrument Lyrtech VHS ADC

Configuration Files

PC Server

PC Client

HC EPICS IOC EPICS Client

LAN

Bitstream XML Conf. DB

HOST DB

Write

CLIENT DB

Write

GUI

ReadWrite

Figure 1: General diagram.

HARDWARE CONTROLLER
IMPLEMENTATION

The HC is the core of the system since it is in charge of
managing the FPGA, the EPICS server, the EPICS IOC, the
DB, the XML configuration files, the local user GUI and of
performing some calculations. The integration of all these
devices has been carried out utilizing Java language be-
cause it is able to handle all of the mentioned needs. Each
case is detailed as following:

FPGA: It uses a C programmed API, so JNA [3] is uti-
lized.

EPICS Server and IOC: There is a Java based tool
called JavaIOC [4].

DB: It is mainly handled by the java.sql class, because it
is implemented in a MySQL database [5].

XML: The configuration file is relatively small and a fast
access to the data is required. DOM technology from w3c
[6] has been chosen.

GUI: SWT toolkit [7] is used.
The HC program is built with several threads in parallel,

to be able to read and write from/to the FPGA, create the
EPICS server, update the DB, build the GUI and parse the
XML configuration file1.

However, in order to guarantee versatility and the ease of
programming different applications to the final user, some
tools, xml rules and instructions have to be provided. These
are treated on the following sections.

Managing Tools

In order to provide a set of tools to program the part of
the HC which is related with the specific application, some
Java classes which fit most common necessities have been
designed. These are:

org.essb.mc.epics.db: EPICS Archiver MySQL DB im-
plementation, managing and configuration tools.

org.essb.mc.epics.db.tables: EPICS Archiver MySQL
DB formatting utils.

org.essb.mc.epics.utils: EPICS utils to manage a
javaIOC: create/destroy context, connect/disconnect

1If more information about the structure of the HC is need, it could be
found in [8].

channels, caget synchronous/asynchronous, caput syn-
chronous/asynchronous, create/destroy monitor and
camonitor.

org.essb.mc.fpga.program: Handle the FPGA: Open/-
Close board, program FPGA, program Flash, set FPGA
clock, set ADCs status, read ADCs overflow and Read-
/Write Registers.

org.essb.mc.fpga.maths: FPGA raw to engineering
units conversion and vice versa, and standard numeric con-
versions.

org.essb.mc.gui.general: Utils to create the GUIs with
the most common objects.

org.essb.mc.xml: Tools to acquire the configuration
data from an XML document and use it in the main pro-
gram.

These tools are enough to program a very wide range of
applications. Nevertheless once one is set up and working,
it is better to have an easy way to reconfigure some param-
eters depending on the specific device or situation. Here
is when the XML configuration file makes the MC more
versatile.

XML Based Configuration

With the XML configuration file, the goal is to recon-
figure the HC to manage the desired application. There-
fore, the first action taken by the HC when it is started
is to ask the user for a configuration file. Then it is
parsed and dumped in a well defined object in the pro-
gram. All the necessary tools to perform this issue are in
the org.essb.mc.xml class.

The time constraints are, normally, a common character-
istic in the accelerators applications, hence, it is important
to guarantee a fast access to the data of the configuration
file. For this reason, it is better to have this data in the
RAM and, therefore, DOM technology is very suitable.

A typical configuration file is like the following one:

< !DOCTYPE MCEBC [<!−− M u l t i p u r p o s e
C o n t r o l l e r Ess B i l b o C o n f i g u r a t i o n−−>

< !ELEMENT MCESSB (Name , Value , FPGA, EPICS ,
BPM) >< !−− M u l t i p u r p o s e C o n t r o l l e r ESS

B i l b o−−>
< !ELEMENT Name (#PCDATA) >

Proceedings of ICALEPCS2011, Grenoble, France WEPMN006

Embedded + realtime software 883 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

< !ELEMENT Value (#PCDATA) > < !−−
I n i t i a l Value −−>

< !ELEMENT FPGA (Used , B i t s , Prec , Reg ,
Custom , Custom_ADDR , Signed ,RW) >

< !ELEMENT Used (#PCDATA) > < !−− I s
used i n FPGA ?−−>

< !ELEMENT B i t s (#PCDATA) >
< !ELEMENT Prec (#PCDATA) >
< !ELEMENT Reg (#PCDATA) >
< !ELEMENT Custom (#PCDATA) > < !−−

Custom => t r u e or L y r t e c h Reg =>
f a l s e −−>

< !ELEMENT Custom_ADDR (#PCDATA) > < !
−− Custom r e g i s t e r A ddress −−>

< !ELEMENT S igned (#PCDATA) > < !−−
Signed => t r u e or No s i g n e d =>
f a l s e −−>

< !ELEMENT RW (#PCDATA) > < !−− Read /
W r i t e=> 0 ,1 −−>

< !ELEMENT EPICS (Used) > < !−− EPICS
c o n f i g i f v b l e i s used i n EPICS −−>

< !ELEMENT Used (#PCDATA) > < !−− I s
used i n EPICS ?−−>

< !ELEMENT BPM (Used , Element , F i t) > < !−−
BPM c o n f i g −−>

< !ELEMENT Used (#PCDATA) > < !−− I s
used i n BPM ?−−>

< !ELEMENT Element (#PCDATA) > < !−−
I n d i c a t e which i s t h e v a r i a b l e i n
BPM a p p l i c a t i o n . L e f t , R igh t , Up

, Down (b u t t o n s) , Amp , Phase , X
or Y −−>

< !ELEMENT F i t (#PCDATA) > < !−− BPM
n o n l i n e a r f i t t i n g v a l u e s c o n f i g
−−>

] >

There are five well defined fields into the XML file. The
first four ones are compulsory and are repeated for all ap-
plications. These are: The name of the variable, its initial
value, the FPGA’s register configuration and if it is EPICS
published or not.

On the other hand, there is the application field which
has to be detailed by the user. In the example there is a
BPM structure which has fields linking/explaining which
button is measuring the variable and some values to fit the
electrical delays.

The implemented data structure for the reconfigurability
of the HC combines the DOM data calls, with a vectors
structure which contains the index of the elements with the
same characteristics. For example, in one vector it is stored
the index of the elements of the DOM structure which have
to be published in EPICS. The implemented structure is in
Figure 2. The vectors (Value, FPGA/Read, FPGA/Write
and EPICS) contain the index of the DOM node which fits
with its function and, on the other hand, there are some
structures which will contain the needed information asso-
ciated with the vector. Conceptually, the working mode is

...
Index 1 2 3 4 n

Value

FPGA ...

...

Read

Write

Reg Bits

Prec

Reg

Cust

ADDR

Signed

EPICS

Elmnt

Chnnl

Monit

...

BPM Left

Right

Up

Down

Amp

Phase

Index

Index

Index

X

Y

From Program

Index

Config

Config

Config

Index

Index

Index

Index

From Program

From Program

DOM

fillFPGARW

DOM

fillFPGARW

DOM

fillEPICS

DOM
fillBPMConf

DOM
fillBPMConf

DOM
fillBPMConf

DOM
fillBPMConf

DOM
fillBPM

DOM
fillBPM

DOM
fillBPM

DOM
fillBPM

DOM
fillFPGA

DOM

DOM

DOM

DOM

DOM

fillFPGA

fillFPGA

fillFPGA

fillFPGA

fillFPGA

Index

a0

a1

a2

a3 Config DOM
fillBPMConf

initXML

initXML

Figure 2: General diagram of communication between the
control algorithm and the Host PC.

the following: Firstly the vectors are filled with the cor-
responding DOM node index. Then, when the program
requires some data, it searches inside the vector, fills the
corresponding structure with the tags of the node and uses
this structure. In Figure 2 it is also detailed the method
which is used to handle the data from the DOM.

Implementing a New Application

The steps to implement a new application assuming that
the FPGA is suitable for the case (range of signals, . . .) are
the following:

1. Create the bitfile of the FPGA which fit with the ap-
plication.

2. Update the configuration file:

(a) Update the FPGA structures according to the
previously designed FPGA bitfile.

(b) Update the EPICS structures.

WEPMN006 Proceedings of ICALEPCS2011, Grenoble, France

884C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

(c) Include a new structure for the application in the
configuration file.

3. Use the org.essb.mc.xml tools to integrate the new
structure into the HC.

4. Use the org.essb.mc.gui.general tools to adequate the
GUI to the application. It is only needed to change
the application tab, because the FPGA handling one is
always the same.

CONCLUSIONS AND FUTURE WORK

In this work, a multipurpose controller based on a com-
mercial FPGA has been presented. It has been designed to
fit the large scientific facilities’ requirements, using EPICS
standard. Therefore, it has to be able to: Perform very fast
calculations and precise acquisition, be integrated into the
global control network and store the required data. The
proposed solution, integrates an FPGA, an EPICS connec-
tion and a MySQL database in order to fulfill all of these
specifications.

The key idea of this paper has been to explain how this
controller has been made versatile, designing programming
tools and using XML technology. Concretely, Java tools
have been built to ease the labour of the programmer and
an XML reconfiguration file has been integrated to make
the final user able to configure the device.

Also it has been proposed a method to implement a new
application based on the defined tools.

As future work it is foreseen the integration of EPICS
database, which is an XML file, into the main XML con-
figuration file. To perform this integration, the use of XLST
is expected.

REFERENCES

[1] Lyrtech, http://www.lyrtech.com/.

[2] EPICS, http://www.aps.anl.gov/epics/.

[3] Java Native Access, https://jna.dev.java.net/.

[4] JavaIOC, http://epics-pvdata.sourceforge.net/.

[5] MySQL, http://www.mysql.com/.

[6] XML DOM, http://www.w3.org/DOM/.

[7] SWT, http://www.eclipse.org/swt/.

[8] I. Arredondo et al. “Fast acquisition multipurpose controller
with epics integration and data logging”, In IPAC’11, San
Sebastian, Spain, 2011.

Proceedings of ICALEPCS2011, Grenoble, France WEPMN006

Embedded + realtime software 885 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

