
UNICOS CPC6: AUTOMATED CODE GENERATION FOR PROCESS
CONTROL APPLICATIONS∗

B. Fernández Adiego, E. Blanco Viñuela, I. Prieto Barreiro, CERN, Geneva, Switzerland

Abstract

The Continuous Process Control package (CPC) is one
of the components of the CERN Unified Industrial Control
System framework (UNICOS) [1]. As a part of this frame-
work, UNICOS-CPC provides a well defined library of
device types, a methodology and a set of tools to design and
implement industrial control applications. The new CPC
version uses the software factory UNICOS Application
Builder (UAB) [2] to develop CPC applications. The CPC
component is composed of several platform oriented plug-
ins (PLCs and SCADA) describing the structure and the
format of the generated code. It uses a resource package
where both, the library of device types and the generated
file syntax, are defined. The UAB core is the generic
part of this software, it discovers and calls dynamically
the different plug-ins and provides the required common
services. In this paper the UNICOS CPC6 package is
introduced. It is composed of several plug-ins: the Instance
generator and the Logic generator for both, Siemens and
Schneider PLCs, the SCADA generator (based on PVSS)
and the CPC wizard as a dedicated plug-in created to
provide the user a friendly GUI. A tool called UAB
Bootstrap will manage the different UAB components, like
CPC, and its dependencies with the resource packages.
This tool guides the control system developer during the
installation, update and execution of the UAB components.

INTRODUCTION

In this paper, we introduce the UAB CPC6 (UNICOS
Application Builder - Continuous Process Control) compo-
nent as a part of the UNICOS (Unified Industrial Control
System) framework. UNICOS is a control system frame-
work, developed at CERN (European Organization for
Nuclear Research), designed to implement control system
applications. This framework provides a methodology, an
object library and a set of tools to generate the control
code for these applications. A UNICOS component or
package is a part of the UNICOS framework which uses
the UNICOS methodology to create a specific type of
applications, provides its own object library and uses the
UNICOS generation tools to obtain the control code for
these applications. Currently there are several UNICOS
components, used for different accelerator systems, such
as CPC, CIET (Cryogenics Instrumentation Expert Tool),
QPS (Quench Protection System) and SURVEY (Control
system for the magnets alignment) [3] (See Fig. 1).

The CPC component has been designed to develop
∗Work partially funded by the Spanish Ministry of Science and

Innovation

Figure 1: UNICOS Overview.

industrial control system applications for continuous pro-
cesses. It has been used for more than ten years
in continuous processes like the LHC (Large Hadron
Collider) cryogenics system, the gas systems of the
LHC experiments, interlock system and lately cooling &
ventilation and vacuum systems [4]. The CPC package
creates applications focused in the two upper layers of
a control system (Supervision and Control) and sets the
communication between them automatically. To achieve
this, the CPC objects Baselines have been developed at the
SCADA (Supervisory Control And Data Acquisition) and
the control levels. The control layer is PLC (Programmable
Logic Controller) based, currently it has been developed for
the Siemens S7 and Schneider platforms and for CoDeSys
(Controller Development System) which makes it platform
independent, while the SCADA layer has been developed
for PVSS, nowadays called WinCC OA (WinCC Open
Architecture).

UNICOS CPC6

The UNICOS-CPC package presents three significant
modifications from the previous version: the methodology,
the objects and a new generation tool called UAB.

The UNICOS methodology has been improved pro-
viding a set of documents and some well-defined steps
to develop CPC control applications. Following this
methodology, the CPC user will be able to transform the
process knowledge into a model based in a hierarchy of
CPC objects (See Fig. 2), and implement the control system
using that information. These objects have been improved

Proceedings of ICALEPCS2011, Grenoble, France WEPKS033

Software technology evolution 871 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

from the previous version, including new functionality and
more flexibility for the users and operators [5].

PCO1Plant

Process Knowledge Model UNICOS Model

PCO2
Control objects

FS1Plant

Turbine

Alarm

PID1Controller

Field objects
ONOFF1Shut-off

ValveControlled ANA1Controlled
Valve

Interface
objects

DO1DI1IO objects AO1AI1Digital
Input

Analog
Input

Analog
Output

Digital
Output

Figure 2: Example of CPC objects hierarchy.

This methodology contains the following steps: (See
Fig. 3).

• Functional analysis: the process engineer transfers
the process knowledge to the UNICOS Functional
Analysis document.

• UNICOS Logic design: the process engineer and the
control engineer work together to define the behavior
of the process in the UNICOS language.

• Specification file filling: all the UNICOS objects are
defined and parametrized using an Excel/XML file.

• Automatic generation: the instance and logic code for
the PLC and the configuration file for WinCC OA are
generated using the automatic generation tools.

• Logic completion: complete the automatic generation
of the logic if necessary, following the UNICOS Logic
design.

• Control code compilation.
• Application tests.
• Commissioning.
• Operation.

USING AUTOMATIC GENERATION
TOOLS

The use of automatic generation tools allows develop-
ment of control system applications with a high level of
abstraction, decreasing the development, configuration and
commissioning time and producing well-structured control
code. For this new version, one of the most important
requirements was to include a more flexible, extensible,
consistent and user-friendly automatic generation tool. As
result of these requirements the UAB has been developed.
This tool generates the control code extracting information
from the UNICOS objects definition and the process
knowledge included in the specification file [2].

Functional
analysis1

Process
Expert UNICOS logic

design2

Specification fileSpecification file
filling3

Automatic code
generation4

Control
Engineer

g

Logic completion5

Control code
compilation6

Application test7 pp

Commissioning8

Process
Operator

Operation9

Figure 3: UNICOS-CPC6 methodology.

Architecture

The UAB architecture is composed of three main parts:
the UAB core, the UAB plug-ins and the resource package
(see Fig. 4). These three parts have different functionalities
and life cycles.

S
7CIET

Templates.py

UnicosApplication.xml

Utilities

UNICOSTypeDefinition.xml

S7 PVSSTCT SCH

SemanticRules.py

Specifications.xml

CPC
Wizard

Output
Files

PLUGINS

UAB Core

CPC Plugins

Figure 4: UAB Architecture.

The UAB has been developed in the Java language as
well as other technologies like the Jython (Pyhton for Java)
scripting language to define the syntax and the contents of
the output files. The format for the configuration files is
XML (eXtended Markup Language) and the technologies
used to process these files are JAXB (Java XML Binding)
and JXPATH (XML Path Language for Java). Apache
Maven is the selected technology to build and manage the
tool.

All the UNICOS objects, as the CPC objects, are
defined as XML files (DeviceTypeDefinitions), where the

WEPKS033 Proceedings of ICALEPCS2011, Grenoble, France

872C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

object structure is defined (Inputs, Outputs, Frond-End
Parameters, SCADA Parameters, etc.). For this purpose,
the so-called UNICOS Metamodel has been designed. This
Metamodel is an XSD (XML Schema Definition) file used
to describe and limit the contents of the DeviceTypeDefini-
tions [6].

UAB Core

The UAB core is the main and generic part of the
tool. It is platform independent and provides the common
services required by most of the plug-ins (for example User
report, logging, etc.). It also has other functionalities, for
example dynamically discovering the different plug-ins and
asserting their validity, loading the UNICOS Project data
information, connecting the plug-ins with the external files,
etc.

UAB Plug-ins

A plug-in is the part of UAB where the structure and
the format of the generated files are defined. It is platform
dependent (i.e. Siemens, Schneider, etc.) and its main
function is to generate these files.

Currently, the CPC package contains the following plug-
ins:

• Siemens Instance Code Generator: it generates the
instance and communication files in SCL (Structured
Control Language) format and the symbols files
containing the address mapping.

• Siemens Logic Code Generator: it generates the
control logic files in SCL format.

• Schneider Instance Code Generator: it generates the
instance and communication files in XML format.

• Schneider Logic Code Generator: it generates the
logic files in XML format.

• WinCC OA Code Generator: it generates the configu-
ration file for WinCC OA in TXT format

• CPC Wizard: it is a dedicated plug-in that provides
a friendly GUI to drive the generation of CPC
applications. It prompts the user for the mandatory
data of the application, validates the user data and
triggers the execution of the selected plug-ins with the
specified parameters. The wizard’s panels can be cus-
tomized through an XML file and a set of predefined
components (like text editors, radio buttons, etc.) (See
Fig. 5).

These plug-ins use the services provided by the UAB
core to perform the following tasks:

• Read the data from the input sources, like the UNI-
COS specification file or the DeviceTypeDefinitions.

• Process the semantic check rules to validate the input
data.

• Execute the Jython scripts.
• Generate the output files.

Figure 5: Wizard panel for the Siemens Logic generator.

The plug-ins are completely independent and it is
possible to launch them through the wizard or one by one
using the XML editor called FESA (Front-End Software
Architecture) General editor from the FESA framework.
Apart form the CPC plug-ins, more plug-ins have been
developed in UAB. For example, for the CIET component
the instance and WinCC OA configuration plug-ins have
been created.

UAB Resources Package

The UAB resources package is the part of the tool where
the CPC objects and the contents of the output files are
defined, it also contains the semantic check rules used to
validate the user inputs during the definition of the project.
The CPC resources package contains the following list of
elements:

• Generation Templates: these templates, written in
Jython scripting language, define the syntax and the
contents of the generated control code. There are five
types of generation templates: the Siemens instance
templates, the Siemens logic templates, the Schneider
instance templates, the Schneider logic templates and
the WinCC OA templates.

• DeviceTypeDefinitions: the XML files which contain
the definition of the CPC objects.

• Baselines: the baseline is the definition of the CPC
objects in PLC code and the additional common code
necessary to make the application run. It uses the
structure defined in the DeviceTypeDefinition and
contains the behavior of the objects. Currently the
CPC package provides the Siemens and Schneider
Baselines and also the UnCPC package which repre-
sents the WinCC OA behavior of the CPC objects.

• Semantic Check rules: these are special kinds of

Proceedings of ICALEPCS2011, Grenoble, France WEPKS033

Software technology evolution 873 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

templates used to check the specification file.
• Input/Output Commissioning template: it’s a

special kind of template designed to generate a
IOCommissioning file to help the process and control
engineer during the commissioning of the system.

UNICOS MANAGEMENT

The special architecture of UAB, where the software is
split in several packages with different life cycles requires
an appropriate mechanism to manage the different software
versions (for example, while the UAB Core will be very
stable, the resource package is susceptible to be modified
frequently, changes such as adding new devices, modifying
existing devices or modifying the syntax of the output
files). For this purpose, the UAB Bootstrap has been
created. This tool, developed in Java, is used to manage
the different UAB components and its resources packages.
The main functionalities of this tool are:

• Upon first installation of UAB, it offers to download
the last version of the available UAB components.

• Check for updates of the installed components and its
compatible resource packages.

• Download/install new UAB components.
• Unique entry point to execute the UAB components

installed.

The different pieces of software that compose UAB
(core, plug-ins, resources) are packaged in different arti-
facts and deployed in a repository manager (Nexus). When
the Bootstrap is executed, it queries the repository manager
to discover new components, new versions of the installed
components and new versions of the resource packages.
When a new version is available on the server, it will notify
the user and offer to download the new software.

To achieve this, the Bootstrap uses the Nexus REST
API and the Aether library. The repository manager
provides the REST API that can be used externally to query
Nexus for available artifacts or test if any of the available
artifacts has a version number higher than the installed
ones. Aether is a general purpose library for interacting
with artifact repositories. It provides functionalities to
specify the repository locations, dependency resolution
between artifacts and artifacts download.

Figure 6 shows the different steps to create an appli-
cation for a CPC user. The UAB Bootstrap packs the
selected CPC component version and the compatible CPC
resources package from the Nexus server and installs the
UAB software in a local machine. Thus the user will create
a CPC application using the CPC wizard installed.

CONCLUSION
The UAB CPC6 component has been developed to add

several improvements for developers and users (control
system engineers).

The developer, using UAB, will obtain more flexibility
and performance, allowing to add new CPC objects easily,

Nexus Server

Local UNICOS-CPC Control Application

SpecsOutputs

\Config Resources Package

Installed software

CPC v1.4
CPC v1.4
CPC v1.2

CPC v1.4
CPC v2.1

cpc-resouces-
package-1.0.3

UAB
Bootstrap

cpc-resouces-
package-1.0.3CPC RP

1.0.3

cpc-resouces-
package-2.0.1CPC RP

2.0.1

Components Resources
Package

CPC v1.2
cpc-resouces-
package-1.0.3cpc-resouces-

package-1.0.3CPC RP
1.0.3

Logs

Figure 6: UAB Management.

new plug-ins for new platforms (for example the CIET
plug-ins), templates or semantic check rules.

For the user, this new version offers a user-friendly
graphic interface to develop CPC applications and a set
of services like a powerful version management which
guaranties the maintenance of these applications, logging,
semantic check verifications, etc. The user can also add
new objects, templates or check rules to the resources
package.

REFERENCES

[1] Ph. Gayet, R. Barillère. “UNICOS a framework to build in-
dustry like control systems: Principles & Methodology”.10th
ICALEPCS Int. Conf. on Accelerator and Large Expt. Physics
Control Systemns. Genève (Switzerland), 10-14 Oct 2005.

[2] M. Dutour. “Software Factory Techniques applied to process
control at CERN”. 11th ICALEPCS Int. Conf. on Accelerator
and Large Expt. Physics Control Systemns. Tennessee (USA),
15-19 Oct 2007.

[3] Hervé Milcent, Enrique Blanco, Frédric Bernard, Philippe
Gayet. “UNICOS: AN OPEN FRAMEWORK”. 12th
ICALEPCS Int. Conf. on Accelerator and Large Expt. Physics
Control Systemns. Grenoble (France), 12-16 Oct 2009.

[4] D. Willeman, E. Blanco, B. Bradu, J. Ortola. “UNICOS
CPC new domains of application: Vacuum and Cooling &
Ventilation”. 13th ICALEPCS Int. Conf. on Accelerator and
Large Expt. Physics Control Systemns. Grenoble (France),
10-14 Oct 2011.

[5] E. Blanco, A. Merezhin, B. Bradu, B. Fernández Adiego,
D. Willeman, J. Rochez, J.M. Beckers, J. Ortola Vidal, Ph.
Durand, S. Izquierdo Rosas. “UNICOS Evolution: CPC
Version 6”. 13th ICALEPCS Int. Conf. on Accelerator and
Large Expt. Physics Control Systemns. Grenoble (France),
10-14 Oct 2011.

[6] B. Copy, R. Barillere, R.N. Fernandes, B. Fernandez Adiego,
I. Prieto Barreiro. “Model Oriented Application Generation
for Industrial Control Systems”. 13th ICALEPCS Int. Conf.
on Accelerator and Large Expt. Physics Control Systemns.
Grenoble (France), 10-14 Oct 2011.

WEPKS033 Proceedings of ICALEPCS2011, Grenoble, France

874C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

