
A UML PROFILE FOR CODE GENERATION OF COMPONENT BASED
DISTRIBUTED SYSTEMS

G. Chiozzi, R. Karban, L. Andolfato, ESO, Garching Germany
 A. Tejeda, Universidad Católica del Norte, Antofagasta, Chile

Abstract
A consistent and unambiguous implementation of code

generation (model to text transformation) from UML
must rely on a well defined UML profile, customizing
UML for a particular application domain. Such a profile
must have a solid foundation in a formally correct
ontology, formalizing the concepts and their relations in
the specific domain, in order to avoid a maze or set of
wildly created stereotypes. The paper describes a generic
profile for the code generation of component based
distributed systems for control applications, the process to
distil the ontology and define the profile, and the strategy
followed to implement the code generator. The main steps
that take place iteratively include: defining the terms and
relations with an ontology, mapping the ontology to the
appropriate UML meta-classes, testing the profile by
creating modelling examples, and generating the code.

INTRODUCTION
In every phase of a new project, one recurring activity

is the assessment of artefacts of previous projects for
opportunities of re-use. This might include requirements,
architectural principles, design and, eventually, code.

Unfortunately, it becomes often apparent that the
documentation is poorly articulated or outdated. The
knowledge acquired during implementation and
commissioning is just reflected in the code and can be
“rediscovered” only by reverse engineering.

The developed code is often tightly linked to a specific
infrastructure, which might have become obsolete or
cannot be adopted due to project constraints.

To overcome some of those deficiencies, platform
dependent information needs to be segregated from the
domain specific application, and yet it must be possible to
keep the two parts aligned automatically.

This principle can be put into practice, using
technology which has become recently mature and,
robust, such as Model Driven Development [1].

We want to use this type of development at ESO for
new projects and the upgrade of existing systems.

MODEL DRIVEN DEVELOPMENT
The availability of open standards like UML, MOF,

CWM (www.omg.org/mda) and open tools, frameworks
and transformation languages (www.eclipse.org/emf) is a
sign that Model Driven Development technologies are
becoming mature and widely adopted [2].

In this approach, the system to be developed is
described using a precisely defined domain specific
modelling language. The artefacts of the development
activity (like documentation and code) are derived from

the original model using model to model or model to text
transformations. The process can consist of multiple
layers, each of them moving from an abstract to a more
concrete representation of the system or from domain
specific to general purpose languages. At the end of the
process, the actual application source code is generated.

Up to a certain level of detail, graphical notations are
best suited for system modelling [3]. We have therefore
adopted the Unified Modelling Language (UML -
www.omg.org/uml) as the general purpose modelling
language. By now, UML is accepted by engineers in
several fields, also outside the software domain.

Moreover, there are tools available, supporting Model
Driven Development based on UML, providing means to
define modelling languages and model transformations
starting from UML.

It is important to notice that this is a step forward with
respect to Model Based Development, where models are
used just in the early phases of a project and afterwards
the code is written by hand. Model Based Development
suffers from the non formal relation between model and
code, which causes obsolescence of the models and
misalignment with the code.

THE PROCESS
In order to be able to formally define and implement

the Model Transformations that allow going from the
model to the final code, it is necessary to have a non-
ambiguous description of the specific domain concepts.

UML provides a powerful mechanism to express
domain specific concepts: the Profile.

A UML Profile is a collection of definitions for
stereotypes, tags and constraints that customize UML for
a domain, redefining the semantics of the modelling
language in an additive way. This means that, inside a
model, different but compatible UML profiles can be used
at the same time to specify different aspects of the system.

We decided to develop a UML Profile to capture the
meta-model necessary to describe our typical architecture
of a telescope and of its instrumentation.

We started with a comparative analysis of the
requirements and architecture of projects developed in the
last years. From this analysis a first version of the profile
was produced.

Unfortunately, while building the profile we realized
that there were very limited possibilities to verify
automatically the correctness and un-ambiguity of our
models with respect to the meta-model. As a matter of
fact the only type of validation allowed is based on the
definition and verification of UML constraints, which are
still not properly supported by most UML tools.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS032

Software technology evolution 867 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

A proper level of formality can be obtained by defining
an ontology [4] for the domain, i.e. a formal description of
the concepts and of their properties, features, attributes,
restrictions and relations.

We created an ontology using UML class diagrams,
starting from the ones we used to identify the profile
elements (Figure 1). However, those concepts and their
relations should be expressed in an ontology description
language like OWL [4].

The resulting ontology is heavily affected by our
experience and our specific focus, therefore groups with
different background might create a different set of
concepts to model the same domain.

Depending on the sophistication of the model
transformations and of the tools used, we can get different
approximations to the real final application.

We have adopted an iterative process consisting of the
following steps:

• Analyze and compare parts of real systems we
have implemented

• Describe in the ontology the common concepts
• Map the ontology to a profile
• Model the system with the new elements
• Implement the transformations
• Compare the generated code with the original

code: it must be readable and reliable and it must
be possible to add easily hand-crafted code

• Analyze what needs to be modelled and/or
refactored at the next iteration

In this work we apply a few basic practical rules:
• An element of the ontology should be mapped in

the profile only if it is worthwhile to model, i.e. if
it takes less effort to transform the model
representation with respect to an handcrafted
implementation. The gain should consider
parameters like one-to-many transformation
scenario, copy&paste errors, or the number of
times the element appears in our models.

• If a concept of the ontology applies to all model
elements, it should be implemented via an external
parameter passed to the transformation engine,
while if it applies only to some model elements, it
should be a stereotype or a tag.

• If a concept of the ontology applies only to some
of the supported platforms, the transformation is
ignored for the other platforms.

In the beginning we must expect to add code by hand
for substantial parts of the application on top of a simple
auto-generated skeleton, but an iterative process of
extensions will add more and more automation.

The selection of the transformation language plays an
important role in the definition of the profile, because
some languages may provide better support for some
profile element than others (for example, trading off
between using stereotypes or tags favours stereotypes
when using the Xpand language). We selected EMF and
the Xpand tool set [5] because already used at ESO for
some other projects. More details on the code generation
process and its implementation are provided in [6].

THE COMODO UML PROFILE
In the overall system model, which includes the

representation of hardware components and is typically
defined using the System Modelling Language (SysML)
profile, our new COMODO (COmponent MODelling for
Observatory) profile allows to and model the parts used to
generate the code of the real control system.

By keeping the abstract and Platform Independent
information separated from the concrete Platform Specific
information, we can generate application code for the
same system on different platforms by simply replacing
the model-to-model transformation for this last layer. A
significant effort was spent in separating the Platform
Independent Model (PIM) from the Platform Specific
Model (PSM).

We will describe here below and in Table 1 some
profile elements.

Distributed Components
Telescope control systems fit very well in an

architecture based on Distributed Components, i.e. in an
architecture where independent entities (called
Components) communicate concurrently and
asynchronously with each other.

In order to keep a clear distinction between PIM and
PSM, we identified three entities in our meta-model:

• Interface (cmdoInterface - PIM)
• Component (cmdoComponent - PIM)

In particular, state charts are used to specify
behaviour. As described with more details in [6],
state charts have been successfully applied at ESO
for modelling reactive systems. An extensive usage
as a core element of design, supported by code
generation, simplifies the development.

• Component Implementation
(cmdoComponentImpl - PSM)

Figure 1: Snippet of the ontology as UML metamodel.

WEPKS032 Proceedings of ICALEPCS2011, Grenoble, France

868C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Deployment
The deployment information for the system is part of

the PSM, since the same architectural Components can be
deployed in different ways depending on the platform.

Moreover, we can have different deployments for the
same applications in different phases of the project or for
different purposes (testing, commissioning or operation).
Deployment is typically a separate responsibility from
development and is done by different actors (system
configurators with respect to developers). Our meta-
model assumes that Components are deployed in
Containers, according to the Component/Container
paradigm used by many distributed infrastructures.

A Container provides to Components a set of services
(like logging or Component location) that helps shielding
the implementation of Components from the specific
software infrastructure adopted. In the simplest case of
the VLTSW infrastructure the Container is just
implemented with a CCS Environment [7], while in the
case of ACS a Container is a process that can dynamically
load and host multiple Components [8].

E-ELT PROTOTYPE INSTRUMENT
As an example, we show here the model corresponding

to a small instrument described in [9], which was
developed as a prototype for the evaluation of software
and electronics for E-ELT instrumentation (Figure 2).

In this model we define generic interfaces for
Subsystems and Devices (Figure 3) which are specialized
for a particular application. For example, from the Device
we specialize Motors and from that Filter Wheels.

All Devices share a state machine specified in the
Device Component platform independent definition.

The model includes the implementation specification
for all these components in Java and a test deployment.

With the existing code generator, we can produce from
this model a skeleton implementation of this system for
the ACS platform, providing sufficient functionality to
start-up the system and test interfaces and state machines.

The developer can immediately implement the
behaviour code (such as state machine actions and
activities) inside the skeletons. With the help of an
application framework, a limited knowledge of the

Table 1: Basic Elements of the Comodo Profile
Name Base

Classifier
Documentation

cmdo
Interface

UML
Interface

Part of: PIM
Public interface that the Component is exposing. Can include:
• Operations provided (synchronous invocation paradigm)
• Published and subscribed data structures (asynchronous communication paradigm)
• Properties, to represent data attributes that can be read/set/monitored
• Error handling and exceptions specification
• Signals to be used as triggers for the state machine

cmdo
Component

UML Class Part of: PIM
Platform independent representation of a Component as it is going to be implemented, realizing the
corresponding Interface and optionally specifying the dynamic behavior with a state chart. A design
including algorithms or private attributes/operations used in any implementation can be specified here.

cmdo
ComponentIm
pl

UML
Artifact

Part of: PSM
The Component Implementation is a manifestation of the corresponding cmdoComponent.
It represents the actual implementation for a specific platform. If we have multiple implementations for
the Component, for example with different programming languages or for different infrastructures, we
can model each of them independently without affecting the platform independent representation.

cmdo
Topic

UML Signal Part of: PIM
A Topic is a type for (published or subscribed) attributes or parameters.
Used as triggers by State Machine.

cmdo
Publish

UML
Property

Part of: PIM
Used to specify whether an attribute in the interface whose type has stereotype cmdoTopic has to be
published.

cmdo
Subscribe

UML
Property

Part of: PIM
Used to specify whether an attribute in the interface whose type has stereotype cmdoTopic has to be
subscribed.

cmdo
Module

UML
Package

Part of: PSM
This is an organizational unit for specifications of components, interfaces, etc.
It identifies a set of deliverables.

cmdo
Machine

UML Node Part of: PSM
Machines represent the physical system were one or more containers can run. The deployment of
containers is modeled as attributes of machines.

Cmdo
Exception

UML Signal Part of: PIM
Exception are used to model errors returned by the interfaces.

Cmdo
Container

UML
Exe.Env

Part of: PSM
Containers are the environments where one or more component implementations can run. The
deployment of component implementations is modeled as attributes of containers.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS032

Software technology evolution 869 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

specific platform is sufficient to complete the
development, flattening considerably the learning curve.

In the case of changing platform, all of the PIM of the
model would remain the same and probably (depending
on the platform) also a big part of the PSM.

Definitions like the ones for Device or Motor are very
generic and could therefore become part of the Profile
itself or of a domain/project specific extension.

FUTURE DEVELOPMENT
Both, the ontology and the profile need to be extended

to cover more domain (telescope and instrumentation)
specific aspects of our systems. At the current stage, we
have just a generic component/container distributed
system model, but we have started to define an
architecture framework for telescopes and instruments.

This will be specified through an ontology, with a
proper ontology specification language, to allow formal
checking.

On the code generation side, we are working on
extending the support for ACS to the C++ language. This
is also the first step to support the VLT platform, which is
essentially based on C++.

CONCLUSIONS
This work is helping us significantly in reaching the

objective of modelling our systems in a platform
independent way, leaving big parts of the code production
to code generators. In this way, the same model can be
reused for different infrastructures and, therefore, for
different projects and with a longer life span. At the same
time, developers are shielded from the details of the
specific platform.

This allows us to work now on the modelling of E-ELT
TCS and instrumentation without knowing what
infrastructure will be finally used, but testing our
architecture on the ACS platform (or on the VLT once the
transformations will have been implemented).

REFERENCES
[1] S. Staab et al., "Model Driven Engineering with

Ontology Technologies", Reasoning Web:
Semantic Technologies for SW Engineering
(2010)

[4] N. F. Noy, D. L. McGuinness, “Ontology
development 101: A guide to creating your first
ontology”, Tech. Rep. SMI-2001-0880, 2001

[7] M.J. Kiekebusch et al., “Evolution of the VLT
instrument control system toward industry
standards”, Proc. SPIE 7740, 77400T (2010)

[8] G. Chiozzi et al., “ALMA Common Software
(ACS), status and development”, in [Proceedings
of ICALEPCS] (2009)

[5] B. Klatt, “Xpand: A Closer Look at the
model2text Transformation Language” 12th
European Conference on Software Maintenance
and Reengineering, (2008).

[6] L. Andolfato et al., “A Platform Independent
Framework for Statecharts Code Generation”,
this conference, (2011).

and Electronics Technologies for the Control of
the E-ELT Instruments: a Case Study”, this
conference (2011)

[2] G. Booch, et al., “An MDA Manifesto”, MDA
Journal, (2004)

[3] D. Harel, "Statecharts in the Making: A Personal
Account", Communications of the ACM, 03/2009,

 Vol. 52, No.03

Figure 2: Partial deployment of the instrument.

Figure 3: Specifications for motors in the prototype.

[9] P. Di Marcantonio et al., “Evaluation of Software

WEPKS032 Proceedings of ICALEPCS2011, Grenoble, France

870C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

