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Abstract
A consistent and unambiguous implementation of code 

generation (model to text transformation) from UML 
must rely on a well defined UML profile, customizing 
UML for a particular application domain. Such a profile 
must have a solid foundation in a formally correct 
ontology, formalizing the concepts and their relations in 
the specific domain, in order to avoid a maze or set of 
wildly created stereotypes. The paper describes a generic 
profile for the code generation of component based 
distributed systems for control applications, the process to 
distil the ontology and define the profile, and the strategy 
followed to implement the code generator. The main steps 
that take place iteratively include: defining the terms and 
relations with an ontology, mapping the ontology to the 
appropriate UML meta-classes, testing the profile by 
creating modelling examples, and generating the code. 

INTRODUCTION  
In every phase of a new project, one recurring activity 

is the assessment of artefacts of previous projects for 
opportunities of re-use. This might include requirements, 
architectural principles, design and, eventually, code.  

Unfortunately, it becomes often apparent that the 
documentation is poorly articulated or outdated. The 
knowledge acquired during implementation and 
commissioning is just reflected in the code and can be 
“rediscovered” only by reverse engineering.  

The developed code is often tightly linked to a specific 
infrastructure, which might have become obsolete or 
cannot be adopted due to project constraints. 

To overcome some of those deficiencies, platform 
dependent information needs to be segregated from the 
domain specific application, and yet it must be possible to 
keep the two parts aligned automatically. 

This principle can be put into practice, using 
technology which has become recently mature and, 
robust, such as Model Driven Development [1]. 

We want to use this type of development at ESO for 
new projects and the upgrade of existing systems.  

MODEL DRIVEN DEVELOPMENT  
The availability of open standards like UML, MOF, 

CWM (www.omg.org/mda) and open tools, frameworks 
and transformation languages (www.eclipse.org/emf) is a 
sign that Model Driven Development technologies are 
becoming mature and widely adopted [2].   

In this approach, the system to be developed is 
described using a precisely defined domain specific 
modelling language. The artefacts of the development 
activity (like documentation and code) are derived from 

the original model using model to model or model to text 
transformations. The process can consist of multiple 
layers, each of them moving from an abstract to a more 
concrete representation of the system or from domain 
specific to general purpose languages. At the end of the 
process, the actual application source code is generated.  

Up to a certain level of detail, graphical notations are 
best suited for system modelling [3]. We have therefore 
adopted the Unified Modelling Language (UML - 
www.omg.org/uml) as the general purpose modelling 
language. By now, UML is accepted by engineers in 
several fields, also outside the software domain.  

Moreover, there are tools available, supporting Model 
Driven Development based on UML, providing means to 
define modelling languages and model transformations 
starting from UML.  

It is important to notice that this is a step forward with 
respect to Model Based Development, where models are 
used just in the early phases of a project and afterwards 
the code is written by hand. Model Based Development
suffers from the non formal relation between model and 
code, which causes obsolescence of the models and 
misalignment with the code.  

THE PROCESS
In order to be able to formally define and implement 

the Model Transformations that allow going from the 
model to the final code, it is necessary to have a non-
ambiguous description of the specific domain concepts. 

UML provides a powerful mechanism to express 
domain specific concepts: the Profile.

A UML Profile is a collection of definitions for 
stereotypes, tags and constraints that customize UML for 
a domain, redefining the semantics of the modelling 
language in an additive way. This means that, inside a 
model, different but compatible UML profiles can be used 
at the same time to specify different aspects of the system.  

We decided to develop a UML Profile to capture the 
meta-model necessary to describe our typical architecture 
of a telescope and of its instrumentation.  

We started with a comparative analysis of the 
requirements and architecture of projects developed in the 
last years. From this analysis a first version of the profile 
was produced.  

Unfortunately, while building the profile we realized 
that there were very limited possibilities to verify 
automatically the correctness and un-ambiguity of our 
models with respect to the meta-model. As a matter of 
fact the only type of validation allowed is based on the 
definition and verification of UML constraints, which are 
still not properly supported by most UML tools. 
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A proper level of formality can be obtained by defining 
an ontology [4] for the domain, i.e. a formal description of 
the concepts and of their properties, features, attributes, 
restrictions and relations. 

We created an ontology using UML class diagrams, 
starting from the ones we used to identify the profile 
elements (Figure 1). However, those concepts and their 
relations should be expressed in an ontology description 
language like OWL [4]. 

The resulting ontology is heavily affected by our 
experience and our specific focus, therefore groups with 
different background might create a different set of 
concepts to model the same domain. 

Depending on the sophistication of the model 
transformations and of the tools used, we can get different 
approximations to the real final application.  

We have adopted an iterative process consisting of the 
following steps:  

• Analyze and compare parts of real systems we 
have implemented  

• Describe in the ontology the common concepts 
• Map the ontology to a profile 
• Model the system with the new elements 
• Implement the transformations  
• Compare the generated code with the original 

code: it must be readable and reliable and it must 
be possible to add easily hand-crafted code  

• Analyze what needs to be modelled and/or 
refactored at the next iteration  

In this work we apply a few basic practical rules:  
• An element of the ontology should be mapped in 

the profile only if it is worthwhile to model, i.e. if 
it takes less effort to transform the model 
representation with respect to an handcrafted 
implementation.  The gain should consider 
parameters like one-to-many transformation 
scenario, copy&paste errors, or the number of 
times the element appears in our models.  

• If a concept of the ontology applies to all model 
elements, it should be implemented via an external 
parameter passed to the transformation engine, 
while if it applies only to some model elements, it 
should be a stereotype or a tag. 

• If a concept of the ontology applies only to some 
of the supported platforms, the transformation is 
ignored for the other platforms.  

In the beginning we must expect to add code by hand 
for substantial parts of the application on top of a simple 
auto-generated skeleton, but an iterative process of 
extensions will add more and more automation.  

The selection of the transformation language plays an 
important role in the definition of the profile, because 
some languages may provide better support for some 
profile element than others (for example, trading off 
between using stereotypes or tags favours stereotypes 
when using the Xpand language). We selected EMF and 
the Xpand tool set [5] because already used at ESO for 
some other projects. More details on the code generation 
process and its implementation are provided in [6]. 

THE COMODO UML PROFILE  
In the overall system model, which includes the 

representation of hardware components and is typically 
defined using the System Modelling Language (SysML) 
profile, our new COMODO (COmponent MODelling for 
Observatory) profile allows to and model the parts used to 
generate the code of the real control system.  

By keeping the abstract and Platform Independent 
information separated from the concrete Platform Specific 
information, we can generate application code for the 
same system on different platforms by simply replacing 
the model-to-model transformation for this last layer. A 
significant effort was spent in separating the Platform 
Independent Model (PIM) from the Platform Specific 
Model (PSM). 

We will describe here below and in Table 1 some 
profile elements.  

Distributed Components
Telescope control systems fit very well in an 

architecture based on Distributed Components, i.e. in an 
architecture where independent entities (called 
Components) communicate concurrently and 
asynchronously with each other.  

In order to keep a clear distinction between PIM and 
PSM, we identified three entities in our meta-model:  

• Interface (cmdoInterface - PIM)  
• Component (cmdoComponent - PIM) 

In particular, state charts are used to specify 
behaviour. As described with more details in [6], 
state charts have been successfully applied at ESO 
for modelling reactive systems. An extensive usage 
as a core element of design, supported by code 
generation, simplifies the development.  

• Component Implementation 
(cmdoComponentImpl - PSM) 

Figure 1: Snippet of the ontology as UML metamodel. 
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Deployment
The deployment information for the system is part of 

the PSM, since the same architectural Components can be 
deployed in different ways depending on the platform. 

Moreover, we can have different deployments for the 
same applications in different phases of the project or for 
different purposes (testing, commissioning or operation). 
Deployment is typically a separate responsibility from 
development and is done by different actors (system
configurators with respect to developers).  Our meta-
model assumes that Components are deployed in 
Containers, according to the Component/Container 
paradigm used by many distributed infrastructures.  

A Container provides to Components a set of services 
(like logging or Component location) that helps shielding 
the implementation of Components from the specific 
software infrastructure adopted. In the simplest case of 
the VLTSW infrastructure the Container is just 
implemented with a CCS Environment [7], while in the 
case of ACS a Container is a process that can dynamically 
load and host multiple Components [8].  

E-ELT PROTOTYPE INSTRUMENT  
As an example, we show here the model corresponding 

to a small instrument described in [9], which was 
developed as a prototype for the evaluation of software 
and electronics for E-ELT instrumentation (Figure 2).  

In this model we define generic interfaces for 
Subsystems and Devices (Figure 3) which are specialized 
for a particular application. For example, from the Device 
we specialize Motors and from that Filter Wheels.  

All Devices share a state machine specified in the 
Device Component platform independent definition.  

The model includes the implementation specification 
for all these components in Java and a test deployment.  

With the existing code generator, we can produce from 
this model a skeleton implementation of this system for 
the ACS platform, providing sufficient functionality to 
start-up the system and test interfaces and state machines.  

The developer can immediately implement the 
behaviour code (such as state machine actions and 
activities) inside the skeletons. With the help of an 
application framework, a limited knowledge of the 

Table 1: Basic Elements of the Comodo Profile
Name Base

Classifier 
Documentation 

cmdo 
Interface 

UML
Interface

Part of: PIM  
Public interface that the Component is exposing. Can include:  
• Operations provided (synchronous invocation paradigm)  
• Published and subscribed data structures (asynchronous communication paradigm)  
• Properties, to represent data attributes that can be read/set/monitored  
• Error handling and exceptions specification  
• Signals to be used as triggers for the state machine  

cmdo 
Component 

UML Class Part of: PIM  
Platform independent representation of a Component as it is going to be implemented, realizing the 
corresponding Interface and optionally specifying the dynamic behavior with a state chart. A design 
including algorithms or private attributes/operations used in any implementation can be specified here.

cmdo 
ComponentIm
pl

UML
Artifact 

Part of: PSM  
The Component Implementation is a manifestation of the corresponding cmdoComponent.  
It represents the actual implementation for a specific platform. If we have multiple implementations for 
the Component, for example with different programming languages or for different infrastructures, we 
can model each of them independently without affecting the platform independent representation.  

cmdo 
Topic

UML Signal Part of: PIM  
A Topic is a type for (published or  subscribed) attributes or parameters. 
Used as triggers by State Machine. 

cmdo 
Publish

UML
Property 

Part of: PIM  
Used to specify whether an attribute in the interface whose type has stereotype cmdoTopic has to be 
published.

cmdo 
Subscribe 

UML
Property 

Part of: PIM  
Used to specify whether an attribute in the interface whose type has stereotype cmdoTopic has to be  
subscribed.  

cmdo 
Module 

UML
Package 

Part of: PSM  
This is an organizational unit for specifications of components, interfaces, etc. 
It identifies a set of deliverables. 

cmdo 
Machine 

UML Node Part of: PSM  
Machines represent the physical system were one or more containers can run. The deployment of 
containers is modeled as attributes of machines. 

Cmdo 
Exception 

UML Signal Part of: PIM  
Exception are used to model errors returned by the interfaces.  

Cmdo 
Container 

UML
Exe.Env 

Part of: PSM  
Containers are the environments where one or more component implementations can run. The 
deployment of component implementations is modeled as attributes of containers. 
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specific platform is sufficient to complete the 
development, flattening considerably the learning curve. 

In the case of changing platform, all of the PIM of the 
model would remain the same and probably (depending 
on the platform) also a big part of the PSM.  

Definitions like the ones for Device or Motor are very 
generic and could therefore become part of the Profile 
itself or of a domain/project specific extension. 

FUTURE DEVELOPMENT  
Both, the ontology and the profile need to be extended 

to cover more domain (telescope and instrumentation) 
specific aspects of our systems. At the current stage, we 
have just a generic component/container distributed 
system model, but we have started to define an 
architecture framework for telescopes and instruments. 

This will be specified through an ontology, with a 
proper ontology specification language, to allow formal 
checking. 

On the code generation side, we are working on 
extending the support for ACS to the C++ language. This 
is also the first step to support the VLT platform, which is 
essentially based on C++.

CONCLUSIONS  
This work is helping us significantly in reaching the 

objective of modelling our systems in a platform 
independent way, leaving big parts of the code production 
to code generators. In this way, the same model can be 
reused for different infrastructures and, therefore, for 
different projects and with a longer life span. At the same 
time, developers are shielded from the details of the 
specific platform.  

This allows us to work now on the modelling of E-ELT 
TCS and instrumentation without knowing what 
infrastructure will be finally used, but testing our 
architecture on the ACS platform (or on the VLT once the 
transformations will have been implemented). 
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