
EPICS V4 IN PYTHON*

Guobao Shen#, Marty Kraimer, Michael Davidsaver, BNL, Upton, NY 11973, U.S.A.

Abstract
Interest in Python as a rapid application development

environment continues to grow. Many large experimental
scientific facilities have adopted Python for beam
commissioning and the operation. The EPICS control
system framework has become the de facto standard for
the control of large experimental facilities, where it is in
use in over 100 facilities. The next version of EPICS
(EPICS V4), under active development will extend the
support for physics applications, data acquisition, and
data analysis. Python support for EPICS V4 will provide
an effective framework to address these requirements.
This paper presents design, development and status of
activities focused on EPICS V4 in Python.

MOTIVATION
As part of the EPICS V4 [1] initiative, there is

increased interest in expanding the conventional low level
hardware support to include high level applications such
as physics applications, data acquisition and data analysis
[2]. The support consists of the following main modules:
(1) pvData, a memory resident real time database with a
predefined data structure; (2) pvAccess, a network
protocol for transferring data over wire; (3) pvIOC, a
processing engine; (4) pvService, a collection of pvIOC
instances implemented as a service.

The high performance/low latency of EPICS V3 for
stream data and instrumentation control has been
thoroughly demonstrated in many facilities. To implement
the proposed extensions to EPICS V4, especially data
acquisition, a major concern is its performance.
Benchmark tests have been conducted at NSLS-II project
to compare the performance of pvAccess with that of
Channel Access [3][4]. These benchmarks were
performed using pvAccess implemented in Java, and
Channel Access implemented in C/C++. The results show
that for scalar data, pvAccess has identical performance
when processing large numbers channels, and a slightly
reduced performance when processing only a few (for
example 10) channels. For array processing, pvAccess
outperformed Channel Access. More detailed
benchmarking results are given in [3]. The benchmark
results satisfied the requirements to proceed with the
proposed enhancements.

A modular infrastructure based on the client/server
model has been designed for NSLS-II for beam
commissioning, physics study, and beam operation
applications [5][6][7]. In this approach, data flow is
separated to 2 parts: (1) acquire data from hardware, and
(2) consume data in the application. The 2 flows are

implemented with a well-defined API. An advantage of
this design is that hardware data flow API is implemented
by developers, who have more experience on data and
hardware control. The data consumption is handled by
physicists who are experts in data analysis.

The client/server implementation is based on EPICS
V4, which provides a good technical framework for the
infrastructure, the flexibility of data structure design, and
satisfactory performance for the physics applications. The
3-tier architecture is shown in Fig. 1. The detailed
explanation of this architecture can be found in [8][9].

Figure 1: System Architecture.

Figure 1 illustrates the application development
environment provided by EPICS V4. Developers have the
flexibility to select their favourite technologies to develop
back end applications.

At NSLS-II, Python has been selected as the primary
development language for physics applications. This
motivated us to provide client side Python support. In
addition, as shown in Fig. 1, all static data stored in the
IRMIS database are served through the V4 server layer. A
Python API is under development for access to the IRMIS
database. To utilize this API, it is required also to have a
Python support on server side.

These 2 factors provided the motivation to have full
Python support for EPICS V4. In this paper, we report the
results and present current development status for Python
support using 3 separate approaches.

PYTHON IMPLEMENTATION
As an interpreted, high-level programming language

with dynamic semantics and native support of extensive
scientific libraries, Python is very attractive for rapid
application development as well as for use as a scripting
or glue language. There is a growing interest in the
community to use Python as the physics application
development platform. At the NSLS-II project, Python
has been selected as primary language for physics
application development.

EPICS V4 was developed originally in Java, and
provides a comprehensive set of features. Later as

*Work supported under auspices of the U.S. Department of Energy
under Contract No. DE-AC02-98CH10886 with Brookhaven Science
Associates, LLC, and in part by the DOE Contract DE-AC02-
76SF00515
#shengb@bnl.gov

WEPKS021 Proceedings of ICALEPCS2011, Grenoble, France

830C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

requested by the community, a C++ binding was
developed and now has full functionality in both the
pvData and pvAccess modules, and basic support in the
pvIOC and pvService modules. The current language
bindings are shown as Table 1.

Table 1: EPICS V4 Language Bindings.

Module Java C++ Python

pvData Y Y Y/Limited

pvAccess Y Y Y/Limited

pvIOC Y Y/Limited N

pvService Y Y/Limited N

In this paper, we will focus on the development in

Python. For the Python binding, there are several possible
solutions: (1) utilizing Python/C API; (2) using existing
wrapping tools; and (3) developing a native binding all in
Python.

In this section, we will discuss the first two, followed
by a discussion of the native binding development the
next section.

Python/C
Python/C provides an API for a programmer to build an

external module callable in Python. It is a relatively well-
understood process to writing an extension module. Most
Python/C API functions have one or more arguments as
well as a return value of type PyObject*. The returned
type is a pointer to an opaque data type, which represents
an arbitrary Python object. All Python object types are
generally treated the same way in the Python language.

We have to pay attention that all Python objects have a
type and a reference count. When exposing an API to
Python, the developer must explicitly manage the
reference count in the C code. When an object’s reference
count becomes zero, the object is de-allocated, and
collected by garbage collector.

Figure 2: Software Structure Using Python/C.

A realistic approach, shown in Fig. 2, for the end user
client interface is to develop a client library in C++, and
wrap the C++ library as a Python interface. Each client
library is standalone. The benefits are that most codes are
in C++, and in general we can gain performance in

Python as good as that in C++. However, changes in
EPICS V4 C++ modules usually affect the client C++
library. As the project grows, the number of end user
client libraries will increase. Long-term maintenance will
become an issue.

Wrapping Tools
To minimize the effect to the client library caused by

changes of V4 C++ modules, another approach is to wrap
each C++ module. This software architecture is as shown
in Fig. 3. The end user API is developed in native Python.
Any change in the EPICS V4 library affects only the
wrapper library, and is transparent to the end API
developer/user. Another advantage with this solution is
that both client and server can use the same wrapping
library.

Figure 3: Software Structure by Wrapping V4 Modules.

Tools such as SWIG, SIP, and Boost Python [10] can
be used to expose C++ API to Python. Essentially, they
are a wrapper for the Python/C API, and provide a more
realistic solution to solve many well-known problems.
For example, using the Python/C API, the developer has
to deal with pointers passed between Python and C++.
The developer is responsible for pointer management,
particularly when the referenced object has been deleted.
Using wrapping tools, those problems are taken care by
the tools.

At NSLS II, 2 tools are evaluated, SIP and Boost
Python respectively. Because SIP does not support the
STD::TR1 smart pointer well, Boost Python was selected
in the end. The Boost Python is one member of the Boost
C++ library collection, and binds C++ and Python in a
mostly-seamless fashion. It also provides a set of policies
to track the ownership of an object in both C++ and
Python domains. With the Boost Python Library, the
developer can quickly and easily export C++ to Python.

A disadvantage with Boost Python library is that a
boost library must be installed, and care has to be taken to
switch between the boost library and the STD library.
Moreover, the Boost Python library does not fully support
STD::TR1 library, and provides a simulated interface set
for STD::TR1.

Native Implementation
Either the Python/C approach or exposing C++ API to

Python using wrapping tools is a workable solution.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS021

Software technology evolution 831 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Although exposing the C++ API allows users to focus
their development on native Python, this heavily relies on
the Boost Python Library. This library dependency forces
all of EPICS V4 to be compiled against the Boost library.
Moreover, tracking and passing object ownership to/from
between C++ and Python domain is difficult.

Although we believe Boost Python is best approach for
exposing the EPICS V4 API to Python, its template meta-
programming mechanism pushes compilers to their limits.
Often it is necessary to increase template-depth limit
settings of the compiler, memory usage can be vast,
compile times are long, and error messages are often
difficult to decipher.

A new design is under consideration to implement
EPICS V4 in native Python to take full advantage of
Python. For example EPICS V4 defined an efficient way
to describe complex data structures and the data protocol.
In the current implementation in either C++ or Java new
data structures must be constructed entirely from the
primitive data types. Using Python, it is much simpler to
map the data structure into a numpy [11] array. The
software architecture is shown in Fig. 4.

Figure 4: Software Structure in Native Python.

CURRENT STATUS

Python/C
As above described, each library developed in

Python/C is a standalone library. In another words, its
development relies on each service development.
Currently, one library is developed for a service
implemented under EPICS V4 in Java, a ‘gather’ service.
The library supports all functions required by clients, and
supports all fundamental data manipulation such as get,
put, and monitor.

Boost Python Wrapping
With Boost Python library, basic APIs have been

implemented in Python for the pvData and pvAccess
modules. The end user interface for accessing the gather
service is under development. Design and
implementation issues related to thread safety and locking
have been found and resolved in the C++ modules.

Basic unit tests have been performed for the exposed
APIs. More detailed testing is necessary to improve the
stability and robustness.

Native Implementation
This is still under design, and the development is at

very early stage. Some preliminary code has been

developed to verify basic ideas, for example mapping
EPICS V4 data structures into numpy arrays.

SUMMARY
This paper presented activities on Python development

for EPICS V4. Several different approaches have been
conducted at BNL and the status is described.

At the present stage, a workable approach is to utilize
Boost Python library. In this approach, there is a trade off
solution between performance and flexibility/scripting.
Performance benchmarking is necessary.

ACKNOWLEDGEMENT
The authors would like to thank Matej Sekoranja at

COSYLAB for his contributions on epics-pvdata
development, especially the pvAccess implementations in
both Java and C++. They want to give their thanks to Leo
Bob Dalesio at BNL for his continuous support and
encouragement.

REFERENCES
[1] http://epics-pvdata.sourceforge.net/
[2] L. Dalesio, et al, “EPICS V4 Expands Support to

Physics Application, Data Acquisition, and Data
Analysis”, This proceedings, FRBHMULT06, Grenoble, France (2011)

[3] G. Shen, “Performance Analysis of EPICS Channel
Access and pvAccess”, NSLS-II Tech Note 082
(2010)

[4] G. Shen, et al, “Server Development for NSLS-II
Physics Applications and Performance Analysis”,
Proc. of PAC11 (2011), MOP252, New York, USA

[5] G. Shen, “A Software Architecture for High Level
Applications”, Proc. of PAC09 (2009), FR5REP004,
Vancouver Canada

[6] G. Shen, “A Modular Environment for High Level
Applications”, Proc. of ICALEPCS09 (2009),
THP094, Kobe Japan

[7] G. Shen, et al, “A Novel Approach for Beam
Commissioning Software using Service Oriented
Architecture”, Proc. of PCaPAC10 (2010),
WEPL037, Saskatoon Canada

[8] G. Shen, et al, “Prototype of Beam Commissioning
Environment and its Applications for NSLS-II”,
Proc. of IPAC10 (2010), WEPEB026, Kyoto Japan

[9] G. Shen, et al, “NSLS-II High Level Application
Infrastructure and Client API Design”, Proc. of
PAC11 (2011), MOP250, New York, USA

[10] http://www.swig.org/;
http://riverbankcomputing.co.uk/software/sip/intro;
http://www.boost.org/

[11] http://numpy.scipy.org/

WEPKS021 Proceedings of ICALEPCS2011, Grenoble, France

832C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

