

ARCHITECTURE DESIGN OF THE APPLICATION SOFTWARE FOR THE
LOW-LEVEL RF CONTROL SYSTEM OF THE FREE-ELECTRON LASER

AT HAMBURG

Z. Geng#, SLAC, Menlo Park, California, U.S.A.
V. Ayvazyan, DESY, Hamburg, Germany

S. Simrock, ITER Organization, St. Paul lez Durance, France

Abstract
The superconducting linear accelerator of the Free-

Electron Laser at Hamburg (FLASH) provides high
performance electron beams to the lasing system to
generate synchrotron radiation to various users. The Low-
Level RF (LLRF) system is used to maintain the beam
stabilities by stabilizing the RF field in the
superconducting cavities with feedback and feed forward
algorithms. The LLRF applications are sets of software to
perform RF system model identification, control
parameters optimization, exception detection and
handling, so as to improve the precision, robustness and
operability of the LLRF system. In order to implement the
LLRF applications in the hardware with multiple
distributed processors, an optimized architecture of the
software is required for good understandability,
maintainability and extendibility. This paper presents the
design of the LLRF application software architecture
based on the software engineering approach for FLASH.

INT OR DUCTION
FLASH is a VUV and soft-X ray free-electron laser

machine located at DESY, Hamburg. The layout of
FLASH is depicted in Figure 1 [1].

FLASH requires high RF field stabilities up to 0.01
degree in phase (at 1.3 GHz) and 0.01% in amplitude [2].
But various perturbations, such as Lorenz force detuning,
microphonics and thermal drift of the cable, will generate
amplitude and phase errors on the RF field in the
superconducting cavities of FLASH [3].

The LLRF system is introduced to maintain the RF
field stabilities with both feedback and feed forward
control schemes [4], see Figure 2. The feed forward
control is used to control the repetitive perturbations like
Lorenz force detuning, beam loading and slow drifts,
while the feedback control is used to control the field
errors caused by random perturbations like microphonics
and charge variations along the bunch train.

Figure 1: Layout of FLASH.

Figure 2: FLASH RF station including LLRF.

There are several great challenges for the LLRF system
operation, including precise calibration of the vector sum
for multi-cavity operation driven by a single klystron,
optimal feedback and feed forward control, exception
detection and handling for system robustness and

automation for easy operation. So, sophisticated
algorithms and application software are required to solve
these problems in addition to the basic control loop.

LLRF APPLICATIONS
LLRF applications are sets of software to facilitate the

LLRF control loop for better precision, robustness and
availability. The main goals of the LLRF applications
include
• Improve the RF field stabilities by optimizing the

parameters of the RF field controller.
• Improve the robustness and availability of the LLRF

system by system diagnostics, exception detection
and handling.

• Support automation for easy operation.
The LLRF applications can be divided into several

categories and their logical relations are show in Figure 3.
Several important applications of each category are listed
in Table 1. ___

#gengzq@slac.stanford.edu

WEPKS010 Proceedings of ICALEPCS2011, Grenoble, France

798C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Figure 3: LLRF application categories.

Table 1: LLRF Applications

Category Applications

Diagnostics - Beam phase and beam current measurement
- Loop phase and loop gain measurement
- Cavity incident and reflected waves

measurement
- Cavity loaded quality factor and detuning

measurement

Signal
Calibration

- Vector sum calibration
- Cavity gradient and phase calibration
- Cavity incident and reflected power

calibration
- RF gun field calibration

System
Identification

- RF system dynamic model identification
- Cavity model identification
- Klystron non-linearity characterization

Control
Parameters
Optimization

- Adaptive feed forward
- Feedback gain scheduling

Exception
Detection

- Cavity quench detection
- Cavity operational limit exceeded detection
- RF system components failure detection

Exception
Handling

- Recovery from cavity quench
- Adjust cavity gradient

SOFTWARE ARCHITECTURE DESIGN

Software Layers
The architecture of the LLRF applications is designed

as several layers, see Figure 4.
The LLRF Algorithm Library will be realized in C

language for better performance of the mathematic
calculations. It contains most of the LLRF domain
knowledge, and is optimized for computation power and
memory consumption so that it can be highly reused for
both DSP and common CPU programs.

Figure 4: Layers of the LLRF applications architecture.

The LLRF Procedure Library will be realized in C++
language for better extendibility. It realizes the procedures
for the tasks (use cases) of the LLRF applications.

Sequential or state dependent logics will be used to
coordinate the procedures. The platform independent
parts of the procedures are designed as abstract classes,
which are reusable for different machines with different
platforms by derived classes, see Figure 5.

LLRF Algorithm Library

LLRF Procedure Library (abstract)

LLRF Procedures for FLASH

LLRF Procedures for ILC

Common
LLRF

Libraries

Platform
Dependent
Procedures

Figure 5: LLRF Libraries.

LLRF Algorithm Library
The aim of this LLRF algorithm library is to share the

implementation with FLASH, European XFEL at DESY
and even the future ILC.

To be maximum reused by various accelerators, the
LLRF algorithm library is designed with C language,
which can fit to the popular control systems like DOOCS
[5], TINE [6], EPICS [7], and so on. And even can be
used for DSP programming.

The library is broken down based on the domains, see
Figure 6. The idea is to pack the code for a specified
domain (like digital signal processing) so that the whole
package can be reused in other applications. Of course, if
one domain package has dependencies to other packages,
the dependencies should be also considered for reusability.

Figure 6: Domain breakdown of the LLRF Algorithm
Library.

For each domain package, the codes are divided into
three parts: “Available Interface”, “Library Body” and
“Required Interface”. The interactions between domain
packages are only through the interfaces.

The advantage of this design is that the library body
can be upgraded without affecting other domain packages
if the interfaces are not changed.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS010

Software technology evolution 799 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

LLRF Algorithms

Required Interface

LLRF Algorithms
Body

Available Interface

Mathematics

Required Interface

Mathematics Body

Available Interface

Figure 7: Dependency between packages.

Software Allocations
The LLRF applications at FLASH are realized in the

DOOCS control system framework. Different
applications are allocated to different DOOCS servers,

and they use RPC to communicate with each other
through the Ethernet.

The front-end servers are used for front-end hardware
control, which will communicate with the LLRF
hardware including FPGA controller. Some applications
with real-time requirements are also allocated here to
avoid the time consumption caused by Ethernet data
transfer.

Most other applications for system calibration and
optimization are realized in the middle-layer servers for
each RF station. The applications that need to adjust more
than one RF station are allocated to the middle-layer
server for global control. One example is the recovery
from quench, from which the cavity gradient of more than
one RF stations may be changed.

Figure 8: Allocation of the LLRF applications.

CONCLUSION
Software architecture is designed for LLRF

applications at FLASH. This is the first time to implement
the LLRF applications in a systematic way. The LLRF
Algorithm Library has been developed and several
applications have been successfully implemented and
tested at FLASH [8], including the control table
generation, vector sum calibration, RF gun calibration,
RF system identification and loop phase and loop gain
control. The architecture is proved successful for good
understandability, maintainability and extendibility,
which will be the reference design for the application
software of the LLRF system for the European XFEL
project. The experiences gained are also useful for the
LLRF system design for other machines like ILC and
normal conducting accelerators.

REFERENCES
[1] http://flash.desy.de/
[2] M. Hoffmann. Development of a multichannel RF

field detector for the Low-Level RF control of the
Free-Electron Laser at Hamburg. PhD thesis. 2008

[3] S. Simrock, Z. Geng. Sources of Field Perturbations,
LLRF lecture for the Forth International Accelerator
School for Linear Colliders.

[4] S. Simrock, Z. Geng. Cavity Field Control, LLRF
lecture for the Forth International Accelerator School
for Linear Colliders.

[5] http://tesla.desy.de/doocs/doocs.html
[6] P. K. Bartkiewicz et al. The TINE Control System,

Overview and Status, ICALEPCS’07, Knoxville,
Tennessee, USA, 2007

[7] http://www.aps.anl.gov/epics/
[8] V. Ayvazyan, K. Czuba, Z. Geng et al., “Low Level

RF Control System Upgrade at FLASH”, in
Proceedings of PCaPAC 2010, Saskatoon, Canada,
2010

WEPKS010 Proceedings of ICALEPCS2011, Grenoble, France

800C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

