
RULES-BASED ANALYSIS WITH JBOSS DROOLS :
ADDING INTELLIGENCE TO AUTOMATION

E. De Ley, D. Jacobs, iSencia Belgium, Ghent, Belgium

Abstract
Rules engines are less-known as software technology

than the traditional procedural, object-oriented, scripting
or dynamic development languages. This is a pity, as their
usage may offer an important enrichment to a
development toolbox.

JBoss Drools is an open-source rules engine that can
easily be embedded in any Java application. Through an
integration in our Passerelle process automation suite, we
have been able to provide advanced solutions for
intelligent process automation, complex event processing,
system monitoring and alarming, automated repair etc.

This platform has been proven for many years as an
automated diagnosis and repair engine for Belgium's
largest telecom provider, and it is being piloted at
Synchrotron Soleil for device monitoring and alarming.
After an introduction to rules engines in general and
JBoss Drools in particular, we will present its integration
in a solution platform, some important principles and a
practical use case..

PHYSICAL SCIENCES AND
INTELLIGENT PROCESS AUTOMATION

General Vision
In today's world of physical scientific research, the

usage of and the dependency on advanced technology has
become crucial. As the boundaries of research shift, the
requirements on tools for exploration, experimentation
and verification become ever more complex and extreme.

The required investments, both in costs and in time, are
typically huge and can no longer be duplicated by all
parties involved in related research domains.
Collaboration in the design and usage of advanced
“centralized” or “shared” research infrastructure, like
synchrotrons, becomes mandatory.

The institutes offering such infrastructure then
effectively become service providers for all the parties
involved in related research disciplines, both for internal
scientists and for visiting researchers (or groups).

Offering complex infrastructure as a service also
implies extensive support organizations and processes,
like project approval procedures, safety and security
regulations, HR, IT support, resource planning, repair
workshops, vendor management etc.

Which in turn implies, maybe a bit paradoxically, that
the more advanced and exotic the technological
requirements for executing scientific research, the more
the organizational aspects get closer to traditional
requirements for professional service providers in non-

scientific domains. But with a clear long-term advantage,
compared to many professional organisations : scientific
institutes have a single long-term goal - offer the best-
possible infrastructure and support for advancing
science. This clear goal can drive the complete
organisation to operate in a transparent and collaborative
way.

It is our vision that a common open software platform
for intelligent process automation can be of tremendous
value to assist an organisation in achieving this goal,
across the majority of its activities by removing
administrative duplication, reducing risk for errors in each
step, removing the need for continuous on-site presence
and combining advanced security with consistency and
transparency where needed.

Such a platform can be used for supporting, automating
and orchestrating a wide range of processes, from
traditional workflows (such as project approval) to
advanced algorithms for resource allocation (e.g.
beamlines, guest rooms, login accounts etc.), from
automated machine monitoring of the accelerators and
control sequences for beamlines, to offering secured
access to experiments' results.

Concretely for Synchrotrons
Automation in synchrotrons is typically associated with

device drivers, sensors, control buses and other technical
components, driven by scripts and hard-coded programs.
But the scope for automation can become much larger by
increasing the level of abstraction. This in turn allows
adding advanced features like automated analysis,
diagnosis and decision management through the
integration of e.g. a rules engine, which is the scope of
this paper.

AUTOMATED ANALYSIS AND
DECISIONS

Some example uses of enriching automated processes
with analysis and decision logic are:

• What to do next? Complex and/or dynamic
routing or filtering logic based on previously
obtained information

• Is what we did OK? automated analysis or
validation of results obtained in previous steps

• Just wake me up when you need me. Intelligent
monitoring systems, integrated in the same
platform to automate basic control processes and
business processes

• Wait a moment, how did we get in this mess?
Correlating acquired data and elementary

WEPKS008 Proceedings of ICALEPCS2011, Grenoble, France

790C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

analysis results to obtain a final diagnosis on a
problem situation

• Oops, how can we get this resolved? Automated
advises for corrective actions in case of problems

• Don't bother me any more for this. Automating
simple recurring decision processes

Automated diagnosis or decision management can be
decomposed in the following stages :

• Autonomous monitoring or discovery
Continuously track some important performance
indicators and generate an alarm when a value
becomes suspect.

• Context-sensitive analysis of raised alarms
Typically involves looking at many different
datasets and measurements.
Uses thresholding, trending etc. to identify
exceptions (e.g. taking your fever)

• Consolidation of obtained information and
analysis results towards a diagnosis or decision
(e.g. “you've got a simple flue”). This may
optionally include advises for problem resolution
or repair.

RULE ENGINES
To cater for the above needs, the software system must

be able to handle large volumes of data and to apply
complex reasoning logic on it. An easy-to-understand
reasoning approach uses conditional actions, also known
as “if-then” logic. Such constructs are frequently used in
traditional programming, but for representing complex
context-dependent logic they quickly become a nightmare
to understand or maintain since :

• it quickly becomes tricky to correctly represent
all combinatorial possibilities of the conditions
with nested if-then-else statements

• the logic is spread out across different parts of
the code base

• the result becomes more and more fragile with
each incremental adaptation

Rule engines are specialized software systems for
applying conditional actions (if/then rules) on data. The
use of a rule engine brings following benefits :

• business logic, expressed as rules, can be
externalized from the application code. The
business logic can then be maintained in a
centralized way with dedicated tools.

• rules can be defined in human-readable form in
text files, spreadsheets etc.

• rules are often defined in a declarative way.
Starting from facts that you know are true, the
desired outcome or action is defined.

• rule engines are optimized to evaluate large rule
bases, find matching conditions and trigger the
corresponding rules.

The term “rule engine” is used in different ways. The
ones which interest us are also known as “production rule
systems”. The central part of such a system is an
inference engine that is able to match rules against facts
or data to infer conclusions which result in new facts or in

actions. Through optimized matching algorithms such
engines are able to scale to high volumes of rules and
facts.

INTRODUCING JBOSS DROOLS
Drools[1] is the leading open-source rules engine

written in Java. It was started in 2001 and became a
prominent Java rules engine with its 2.0 release. In 2005
the Drools project became part of the JBoss group and
since then Drools also became known as JBoss Rules. In
2006 JBoss was acquired by Red Hat. Besides funding the
core development team, they provide professional
services like support and training. The current stable
version is Drools v5.2.

The Drools suite contains several modules that together
form their Business Logic Integration Platform, of which
the following ones are of interest for our purposes :

• Drools Expert : the actual rule engine
• Drools Fusion : an integrated engine extension to

support event processing and temporal reasoning
• Drools Planning : automated resource planning

Drools Engine
The core of the Drools suite is an advanced Inference

Engine using an improved Rete algorithm[2] for pattern
matching, adapted for object oriented systems, and for
Java in particular. Rules are stored in the production
memory, while facts are maintained in the working
memory.

Figure 1 : The main parts of a rule engine.

The production memory remains unchanged during an
analysis session, i.e. no rules are added or removed or
changed. The contents of the working memory on the
other hand can change. Facts may be modified, removed
or added, by executing rules or from external sources.
After a change in the working memory, the inference
engine is triggered and it determines which rules become
“true” for the given facts. If there are multiple selected
rules, their execution order will be managed via the
Agenda, using a conflict resolution strategy.

When a selected rule has been executed, and one or
more changes were done in the working memory, the
inference engine goes to work again, adapting the agenda
and executing the rule that has now reached the highest
priority. This iterative process continues until the agenda
is empty. Then the analysis session terminates and results
can be queried from the working memory or through the
usage of global variables.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS008

Software technology evolution 791 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Figure 2 : Iterative inferencing.

Options for Rules Definitions
Drools offers different ways to define rules. The native

rules language will feel familiar for Java developers, with
the addition of advanced expressions for specifying
conditions. For example :

rule "Raise prio if 3 pending alarms"
when
 $system : System()
 $alarms : ArrayList(size >= 3)
 from collect(Alarm(system == $system,

status == 'pending'))
then
 # Raise priority, because $system has
 # 3 or more alarms pending.
 # The pending alarms are in $alarms.
end

When repetitive rule patterns occur, one can set-up
more readable approaches to define the rules. One way is
to create a rule language dedicated to the problem
domain, so-called DSL rules.

Rules can then be expressed like :

when
 There is a Cheese with
 - age is less than 42
 - type is 'stilton
then
 Taste It

which gets translated at runtime in the technical rule
language, based on the defined DSL mapping.

A third interesting approach to define rules is to use
spreadsheets. This offers a familiar entry tool for non-IT
persons to easily define large rules sets as long as they fit
in a-priori defined rule templates.

INTRODUCING PASSERELLE
Within Passerelle [3], all processes are defined in

graphical models that are executable by one of the
available executors. In “real” production environments,
the Passerelle Manager, our web-based process
automation server platform[4], is the preferred execution
engine. It offers a complete solution for process
definition, maintenance, execution and follow-up.

In the Passerelle process engine, a process (a.k.a.
sequence) is defined by a graphical assembly of actors
that each perform a step of the complete process.
Assemblies are stored in XML files. Actors get single
well-defined responsibilities and are unaware of their
surrounding “colleagues”. They are only able to
communicate via messages sent across channels between
the sender's output port and the receivers' input
port(s).This strong decoupling improves reusability and
maintainability.

Figure 3 : Reading a file in Passerelle.

In the figure above, the FileReader actor will read a text
file from a configurable location, and will send a message
for each line to the next actor. In this simple model, this
one just dumps the text content of each received message
to a Console view.

There are actors available to control Tango devices, to
make routing decisions in the process flow, to query
databases, send e-mail or SMS etc.

INTEGRATING DROOLS
Drools is easy to integrate in any Java application via :
• Standard JSR-94 Java Rule Engine API
• Drools' own “Knowledge API” with more

advanced capabilities, for example to be able to
use the Fusion and Planning modules.
Passerelle uses the Drools Knowledge API.

One can distinguish the following major API features,
required for integration in a production-ready solution:

1. Build a binary version of a knowledgebase
packages, from the different types of source

2. Select a knowledgebase package for execution
3. Start an analysis session
4. Feed facts into the working memory
5. Start the inference engine
6. Obtain the results
7. Release session resources when appropriate

Rules and Processes as Versioned Assets
For integration features (1) and (2), Passerelle includes

a specialized repository service to maintain process
models, and rules assets, grouped in project assets. The
service offers a.o. version management, knowledgebase
building and packaging, a simple API to retrieve pre-built
binary knowledgebase packages and import/export to
migrate project assets between test and production
environments.

Actors with Intelligence?
Passerelle has specialized actor libraries to integrate the

usage of the Drools rule engine in an automated process.
These actors utilize the Drools API features (3)-(7) as
described above. By configuring the actors with a

WEPKS008 Proceedings of ICALEPCS2011, Grenoble, France

792C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

reference to the desired rules package, a limited number
of actor implementations can be reused in many different
processes, each time with the matching rules-based logic.

In this way it is possible to apply rules to analyse the
results of the work done in the previous steps of the
process, and act on the obtained analysis results, all
within a common paradigm of sequences and actors.

Support Tools
Passerelle Manager stores all analysis results, including

timed task execution traces, in a relational database. The
web UI includes rich views on this data, to aid with
application support and with control and improvement of
the analysis quality.

EXAMPLE : DIAGNOSIS OF TELECOM
LINE - AND SERVICE QUALITY

For the largest Belgian telecommunications provider, a
solution has been implemented and is operational since
approximately 5 years. To reduce the waiting times for
the customers that are contacting the support help-desk,
there was a need to be able to automatically trigger a
number of tests and measurements on the impacted
telephone line and associated services. This should
happen even before the customer gets in contact with a
help-desk operator, i.e. while still in the waiting queue.
Then the operator already has all detailed test results
available about the condition of the telephone line, ADSL
services etc, when the customer is passed through. Also
field technicians, working on-site at their customers can
use this automated Diagnosis And Repair Engine.

Each day, approximately 35000 diagnoses are
performed for about 700 help-desk operators and 2500
technicians, with dedicated rules for different customer
segments, line technologies etc. The result is a dramatic
reduction in error rates and a significant increase of “first-
time-right” indicators.

EXAMPLE: MONITORING BEAMLINE
SOURCE POSITIONS

In this scenario, the goal is to continuously compare
beamline source positions to reference values, and to
check for slow drift. When the measured position starts
drifting, or deviates from the reference position by more
than a given threshold, a number of possible root causes
must be evaluated (like temperature circuits, insertion
device changes etc), and a diagnosis on the plausible
cause(s) must be produced.

This requires analysing a stream of position
measurement events to :

• compare them against reference values obtained
from a snapshot

• check measurement values for drift within a
certain time window

Figure 4 : A fragment of the monitoring sequence.

The monitoring sequence includes an actor to read the
reference values from a snapshot and to feed them via an
event stream input to the PositionMonitor actor. The
HDBExtractorNewestPos actor periodically reads the
latest position measurements from the archive and sends
these as events to the PositionMonitor. This one can then
compare the measurements with the snapshot and also
check for drift in measured positions in a time window of
e.g. 15 seconds. The below presents an example of using
a Java domain model in rules :

rule " BLSrcPosition drift > 0.01 within 15 s"
 when
 bl1 : BLSrcPosition($blName1 : beamLine,

$blPos1 : position)
from entry-point "BL SrcPos Stream"

 bl2 : BLSrcPosition($blName2 : beamLine,
beamLine == $blName1,
this after [0s,15s] bl1,
eval(position.distanceTo($blPos1)>0.01))
from entry-point "BL SrcPos Stream"

 then
 // raise an alarm...
end

CONCLUSIONS
We have presented the concepts and the added value of

integrating a rule engine in a software platform for
intelligent process automation. Drools offers many
advanced features that are of interest. Besides using
standard production rules, it is also possible to perform
temporal event-based reasoning and resource planning.

The resulting solution platform can be applied in many
different domains, ranging from automated diagnosis and
repair in telecommunications customer support to
monitoring synchrotron infrastructures to automating
beamline experimental sequences.

REFERENCES
[1] JBoss Drools : http://www.jboss.org/drools/
[2] Charles Forgy, "On the efficient implementation of

production systems." Ph.D. Thesis, Carnegie-Mellon
University, 1979.

[3] Passerelle project information :
http://www.isencia.be/services/passerelle and
http://code.google.com/a/eclipselabs.org/p/passerelle/

[4] E. De Ley et al. : “Web-based Execution of Graphical
Workflows : a Modular Platform for Multifunctional
Scientific Process Automation”, ICALEPCS 2011.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS008

Software technology evolution 793 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

