
DEPENDABLE DESIGN FLOW FOR PROTECTION SYSTEMS USING
PROGRAMMABLE LOGIC DEVICES

M. Kwiatkowski∗, B. Todd† , CERN, Geneva, Switzerland

Abstract

Programmable Logic Devices (PLD) such as Field Pro-
grammable Gate Arrays (FPGA) are becoming more preva-
lent in protection and safety-related electronic systems.
When employing such programmable logic devices, extra
care and attention needs to be taken. The final synthesis re-
sult, used to generate the bit-stream to program the device,
must be shown to meet the design’s requirements. This
paper describes how to maximize confidence using tech-
niques such as Formal Methods, exhaustive Hardware De-
scription Language (HDL) code simulation and hardware
testing. An example is given for one of the critical func-
tions of the Safe Machine Parameters (SMP) system, used
in the protection of the Large Hadron Collider (LHC) at
CERN.

CERN is also working towards an adaptation of the IEC-
61508 lifecycle designed for Machine Protection Systems
(MPS), and the High Energy Physics environment, imple-
mentation of a protection function in FPGA code is only
one small step of this lifecycle.

The ultimate aim of this project is to create generic tech-
niques and methods applicable to any PLD based system
requiring a rigorous implementation and verification.

CERN AND THE LHC

The Large Hadron Collider is the world’s most powerful
particle accelerator. To reach the new frontiers of physics a
centre of mass collision energy of 14 TeV is needed, giving
a stored beam energy over 100 times higher than in any
other machine (Figure 1).

Figure 1: LHC Stored Energy versus other HEP machines
[1].

∗maciej.kwiatkowski@cern.ch
† benjamin.todd@cern.ch

The LHC is designed to accelerate two counter-rotating
beams of 3.2 · 1014 protons from an injection energy of
450 GeV to a collision energy of 7 TeV. At design val-
ues, the peak energy stored in each beam is equivalent to
362MJ, enough to heat and melt around 500kg of copper.
A field of 8.3 Tesla is needed to hold the LHC beam in
27km circumference of the machine, this magnetic field is
generated by 1232 super-conducting dipole magnets, each
having a forward current of almost 13kA, being maintained
less than two degrees above absolute zero (-273 degrees
Celsius) in a bath of superfluid helium. At design energy,
the total stored energy in the LHC magnet powering sys-
tem is around 10GJ, and a loss of only 10−8 − 10−7 of the
nominal beam [2] into one of the superconducting magnets
will lead to a quench, where the magnet heats up, becomes
resistive and must be switched off to prevent damage.

A complex MPS has been designed to mitigate the risks
due to stored beam and magnet energy, a fundamental part
of the MPS is the Safe Machine Parameters Controller
(SMPC).

SAFE MACHINE PARAMETERS

For the correct protection of the LHC and its accelera-
tor complex, several parts of the MPS require information
about the machine’s operational parameters. Values such
as beam intensities, machine energies, squeezing factors,
amongst several others, must be broadcast around the ac-
celerator complex to correctly configure the MPS, and sent
to the extraction interlock systems to ensure the correct in-
terlocking of beam transfer between the Super-Proton Syn-
chrotron (SPS) and the LHC.

These parameters are referred to as Safe Machine Pa-
rameters (SMP), as they must be generated and distributed

Figure 2: Safe Machine Parameters System.

WEMMU010 Proceedings of ICALEPCS2011, Grenoble, France

706C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Protection and safety systems



Figure 3: Machine Protection System Lifecycle Based on IEC-61508 E/E/PE Lifecyle.

around the accelerator complex with high dependability
(safety, availability and reliability). The SMPC was devel-
oped to derive these SMP, taking information from several
source systems and providing it to client system, as shown
in the Figure 2.

The outputs of the SMPC either go directly to the extrac-
tion interlock controllers, or are broadcast around the ma-
chines using the General Machine Timing (GMT) network.
These different parameters address two principle types of
risk: risks during the extraction and transfer of beam from
the the SPS into the LHC, and risks during LHC phases
following the injection process.

The first group presents particularly tight requirements
in terms of time and accuracy, as the transfer of beam from
the SPS to the LHC is a very fast process, a single extrac-
tion of beam from the SPS is already capable of quenching
and damaging LHC magnets.

The SMPC plays a key role in the protection of the LHC
and its injector complex.

MACHINE PROTECTION SYSTEM
LIFECYCLE

Requirements for the MPS, including the SMPC, came
from decades of work and substantial investigations into
the performance of the LHC and its MPS, following a deep-
thinking argumentative approach. The risks due to LHC
stored beam and magnet energy do not pose a threat to per-
sonnel or the environment, as as such are not a hard, legal
requirement of the LHC project. Nevertheless, there are

significant advantages to be gained by considering the de-
velopment of the MPS as if it were a safety system, being
legally required.

During the development of the SMPC, and some of the
other MPS sub-systems, such as the Beam Interlock Sys-
tem and Powering Interlock Controllers, common themes
and ideas have began to emerge. The combination of these
ideas has led to the concept of a MPS Lifecycle (MPSL),
based on the IEC 61508 overall system lifecycle. The
MPSL concept allows a consistent approach to the evalu-
ation of existing parts of the MPS, whilst at the same time
providing a framework for the development of new protec-
tion systems. Figure 3 shows this proposed MPSL.

The part of the MPSL which is relevant to the pro-
grammable logic device flow is that related to the imple-
mentation of so-called Protection Functions (PFs) which
are being established using devices such as FPGAs. The
following sub-sections detail some of the key concepts of
the MPSL, before concentrating on those parts relevant for
PLDs.

Equipment Under Control

The Equipment Under Control (EUC) must be well un-
derstood by protection system designers, in CERN’s case,
the EUC can be considered as the particle accelerator and
its associated mechanical, electric and electronic equip-
ment. To realise such complex systems, experts from many
domains must work together to establish potential hazards
and the effects these have on the EUC. Based on this risk
analysis approach, each risk should be assessed and classi-

Proceedings of ICALEPCS2011, Grenoble, France WEMMU010

Protection and safety systems 707 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



fied. Risk being a combination of the probability of occur-
rence and the severity of a hazardous event and it is usually
expressed qualitatively (qualitative risk analysis).

Protection System Process

The designers are then to conceive mitigations for these
risks by working on two fronts: working to reduce the like-
lihood of the hazardous event, and by working to reduce
the consequences of such an event were it to occur. The
ultimate goal of this is to reduce risks to acceptable levels,
another way is to use the phrase ”As Low as Reasonably
Possible” (the ALARP principle). This means that for each
risk that is identified, a reduction is needed to achieve the
ALARP level. The higher the risk the larger the required
Risk Reduction Level (RRL).

Several approaches can be used to reduce risks, some
of which result in the creation of PFs. It is possible that
several risks can be mitigated by many PFs, and the PFs
can be spread across many sub-systems.

In the case of the LHC MPS, one of these sub-systems
is the SMP system, which is required to implement several
PFs, by exploiting PLDs.

PROGRAMMABLE LOGIC DEVICE
PROCESS

The PLD design process starts with clear separation of
what is part of the PFs from other non-critical functions.
Functions that are part of the PF are to follow this PSL pro-
cess, whereas those functions that are non-critical are not
needed to have the same levels of rigour. The conceptual
separation of the critical from non-critical functions should
be followed through to the hardware realisation. Hardware
must not mix critical and non-critical functions! If no other
choice exists, then non-critical functions which share com-
mon devices with critical ones must also be verified using
the full protection system process.

In case of the SMPC each printed circuit boards has two
separate FPGA devices for functions. The first, a control
FPGA device, is tasked with critical functions, the second,
a monitor device, records and supervises the operation of
the control device and implements the non-critical func-
tions. For example, the online monitoring of the SMPC,
which is important but not critical for the protection of the
EUC.

Specification Phase

Each critical function must be decomposed into func-
tional blocks, ones which lend themselves easily to anal-
ysis and understanding. In addition, each must be capable
of being readily specified using a formal language.

For example, the block diagram of the SPS Setup Beam
Flag (SBF) is shown on flag is used in the
process of beam injection from the SPS to the LHC accel-
erator. The SPS SBF is a function of SPS beam intensity, to
increase availability the intensity information is redundant,

Figure 4: Setup Beam Flag blocks example.

being merged into one value. The one out of two block se-
lects valid intensity value, when both of the sources are not
valid the fail safe value is applied. The limit block com-
pares calculated intensity value to a predefined threshold
(SETUP BEAM LIMIT).

The formal specification of the SPS SBF
calculation is presented on
and selection flags (FLG INTENSITY 10 ERR,
FLG INTENSITY 10 A NOT B) are not formalized
because they are used for the monitoring purpose and they
do not belong to the critical functionality. The key strength
of this Predicate Logic formal language is in interpreta-
tion: if correctly written, it can only be understood by
designers in a single way, which is not always the case
for a traditional specification. The formal language also
allows a formal verification of some design parameters,
allowing a mathematical verification the completeness and
the consistency of the specification.

Figure 5: Setup Beam Flag in Predicate Logic.

Implementation Phase

Each of the smaller functional blocks which were con-
ceived in the previous step are then implemented. Each
block should be the correct size as to be simulated com-
pletely before being integrated into the sub-system. When
all the blocks are implemented and have passed simula-
tion, the complete system can be composed by connecting
the blocks together. The actual implementation phase is a
very small part of the overall time spent on PLD firmware
development. The vast majority of the time is spent on
simulation and testing. Hardware Description Language

Figure 4. This

Figure 5. Error

WEMMU010 Proceedings of ICALEPCS2011, Grenoble, France

708C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Protection and safety systems



(HDL) code, such as VHDL or Verilog, is written to de-
scribe PLD function, HDL languages should not be associ-
ated with programming languages but rather with modeling
tools. The designer should always know what the expected
result of the synthesis process is to be, this should be also
verified using the output of synthesis tools. This kind of
verification is much easier when the blocks are small and
readily understood.

Software Simulation Phase

Software simulation is carried out on the block level as
well as on the system level. Simulation with code coverage
is a fundamental requirement for critical functions. A soft-
ware test-bench is required, which should wrap the Unit
Under Test (UUT) inside Bus Functional Models (BFMs),
passing stimuli to the UUT and recording its responses.
Behaviour which is not specified for the block or the sub-
system can be detected and fixed, at the same time the test-
bench should evolve to include new conditions as the weak-
nesses in code coverage are identified. It is preferred that a
critical function achieves full code coverage.

Figure 6: Software simulation with code coverage.

Hardware Testing Phase

Once the smaller blocks have been implemented, sim-
ulated and combined, the real hardware can be generated.
This is then tested using a dedicated hardware tester. Hard-
ware testing is obligatory on the system level but optional
at the block level, this is due to technical difficulties in real-
ising good test equipment and also the cost of the hardware
tester construction must be considered. On the other hand,
a complex block may warrant the investment of time and
money in a dedicated test hardware.

The hardware tester generates input stimulus and checks
the response of the Device Under Test (DUT), in much the
same way as the simulation test-bench, but this time us-
ing real signals, logging real results. Its advantage over the
software simulation is its speed and the possibility to intro-
duce real distortions, such as noise on a signal. A very use-
ful hardware testing tool provided by device manufacturers
is an Embedded Logic Probe (such as Xilinxs ChipScope
or Alteras SignalTap). The probe is integrated with the de-
sign and finally programmed into PLD DUT. It uses device
memory resources for recording selected internal or exter-
nal signals, thus the critical device must have spare cells
and memory to accommodate this. With this analyzer in

Figure 7: Hardware tester.

place it is possible to record internal signals using a variety
of trigger conditions. A typical setup with an embedded
logic probe is shown on Figure 7.

Code Review

Finally, once all elements have been proven to function
as expected, the HDL code should be reviewed via at least
an internal audit, and preferable including an external audit
too. A key element during this phase is good documenta-
tion and especially a clear depiction of the formalised ver-
sion.

CONCLUSIONS

All the phases described above should be documented
and kept to form a basic safety case. When bugs or mis-
takes are found it will help to identify weak points of the
test cases, testing processes, and even weaknesses in the
design specification. All of this information can be used to
correct future implementations. In addition, a clever selec-
tion of the design partitioning, and basic functional block
requirements vastly increases HDL code reusage: thus the
invested time in test benches and verification is also saved,
and it is possible to reuse the same well verified blocks in
the future designs.

The MPSL presented gathers many elements which have
been often used in the development of systems at CERN,
but are not necessary currently being done in a comple-
mentary and systematic way. These concepts and ideas are
very much a work in progress, at the same time it is evi-
dent that such an approach encourages both designers, and
those that specify designs to use good practices, and really
understand what they require of a system. In doing this the
confidence in the final system can be increased.

REFERENCES

[1] R. Assmann et al, “Requirements for the LHC collimation
system”, EPAC’02, La Vilette, Paris, 2002, http://jacow.
org/e02/TALKS/TUAGB001.pdf.

[2] R. Schmidt and J. Wenninger, “Protection against Accidental
Beam Losses at the LHC”, PAC’05, Knoxville, 2005, http:
//jacow.org/p05/PAPERS/MOPA005.PDF.

Proceedings of ICALEPCS2011, Grenoble, France WEMMU010

Protection and safety systems 709 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


