
THE LABVIEW RADE FRAMEWORK DISTRIBUTED ARCHITECTURE

O. Ø. Andreassen, D. Kudryavtsev, A. Raimondo, A. Rijllart, V. Shaipov, R. Sorokoletov, CERN,
Geneva, Switzerland

Abstract

For accelerator GUI applications there is a need for a
rapid development environment to create expert tools or
to prototype operator applications. Typically a variety of
tools are being used, such as Matlab or Excel, but their
scope is limited, either because of their low flexibility or
limited integration into the accelerator infrastructure. In
addition, having several tools obliges users to deal with
different programming techniques and data structures.

We have addressed these limitations by using
LabVIEW, extending it with interfaces to C++ and Java.
In this way it fulfils requirements of ease of use,
flexibility and connectivity, which makes up what we
refer to as the RADE framework.

Recent application requirements could only be met by
implementing a distributed architecture with multiple
servers running multiple services. This brought us the
additional advantage to implement redundant services, to
increase the availability and to make transparent updates.

We will present two applications requiring high
availability. We also report on issues encountered with
such a distributed architecture and how we have
addressed them.

The latest extension of the framework is to industrial
equipment, with program templates and drivers for PLCs
(Siemens and Schneider) and PXI with LabVIEW-Real
Time.

INTRODUCTION
Integrating equipment and software in CERN

accelerators like the LHC, which contains more than 1200
dipole magnets, more than 8000 other superconducting
magnets operating at temperatures down to 1.9 K and
with currents up to 12000 A is a great challenge [1]. When
one also adds its size into the equation (27 Km) it doesn’t
ease the task of operating this marvellous machine.

With the RADE (Rapid Application Development
Environment) framework and LabVIEW we have
managed to ease the job of integrating new and existing
projects into all the different disciplines at CERN [2].
With our distributed architecture the user does not have to
update their RADE libraries, we maintain them on our
server and ensure compatibility with new releases as long
as the underlying protocol or library does not become
deprecated or replaced.

ARCHITECTURE
In computer programming, a software framework is an

abstraction in which software providing generic
functionality can be selectively changed by user code,
thus providing application specific software. It is a

collection of software libraries providing a defined
application-programming interface (API) [3].

LabVIEW already gives you the foundation needed to
do fast programming by providing an integrated
development, debug and deployment environment based
entirely on graphical programming, as well for the code,
as for the GUI development. In addition it gives you a
powerful and flexible set of analysis and math libraries
out of the box.

Figure 1: RADE Architecture.

Our development effort is thus concentrated on the
integration into the CERN accelerator control and storage
infrastructures, with an objective of making the
deployment and maintenance of the framework
transparent for the users, yet always up-to-date with the
latest dependencies and additions.

Total Package
The RADE framework also aims to give users a total

package for development, maintenance and support (Fig
1), making it quick to implement yet highly stable,
maintainable and flexible through well defined
development templates, guidelines and documentation.

Currently we are working on expanding this framework
and do a “total integration” in LabVIEW at CERN.

Templates, documentation, source control, updates, and
libraries are being added to the foundation as the testing
of them finishes.

By adding a layer on top of LabVIEW we can
synchronize the client installation with our Subversion
(SVN) [4] and data repositories.

WEMAU003 Proceedings of ICALEPCS2011, Grenoble, France

658C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

Project Generator
In addition a project generator (Fig. 2) has been created

which can be called through the native menus of
LabVIEW.

The Project Generator will create a skeleton project and
folder structure for the user, and if desired store this
project on our SVN repository dedicated for user projects.
It also automatically generates documentation, executable
files, help files, and integrates system and RADE
components into the project so that if the user at a later
point would like to update or retrofit his sources to a later
version of RADE, he can do so.

RADE LIBRARIES
The RADE libraries consist of several communication

layers (Fig. 3), adapted to the necessary protocols. It also
makes use of a distributed architecture where several
redundant servers host the communication and analysis
libraries. These can potentially be written in any software

Figure 3: Library layers in RADE.

language, but we mainly use the CERN Java packages
and native LabVIEW servers that communicate with the
LabVIEW client through sockets.

Java interface
The Java API for Parameter Control (JAPC) is a

communication layer to control accelerator devices from
JAVA [5]. Client programs can access JAPC parameters
with set and get actions or by subscribing to the data.
JAPC is a unified Java API for almost all parameters
present in the control system. The diversity of devices is
handled below the JAPC interface where each kind of
device has its own implementation.

In the RADE framework we have implemented a
LabVIEW to JAPC interface using a Tomcat server (Fig.
3) as mediator. The same mechanism is used to access
ORACLE databases.

CMW Wrapper
The Common MiddleWare (CMW) API incorporates

Set, Get and monitor actions like the JAPC API, but it is
written in C++ and runs locally with the client [6].

We implemented the LabVIEW to CMW interface
(CMW wrapper) by wrapping the C++ API into call back
functions and turning it into a shared library, which is
called by LabVIEW using the call library interface node.

The Toolkit was designed to be cross platform so the
dependant libraries can be compiled on any platform
supported by the CMW API (Mainly Linux and
Windows).

SDDS Library
SDDS stands for Self Described Data Set [7]. This file

format is commonly used at CERN and can contain any
kind of data. This standard is used in the LHC to store
equipment data (currents, voltages, levels etc.), used to
inform the domain experts about the system health.

Since a failure in the machine can produce more than
10.000 files in a single dump, the SDDS library was
designed to index and read only the requested portion of a
file, improving reading speed and saving time when
performing analysis.

PLC Library
The communication to the PLC is written in standard

LabVIEW using the “Fetch-Write” protocol from
Siemens through TCP-IP. The “Fetch-Write” has to be
declared in the PLC to authorise external devices
accessing its data blocs. For more flexibility we are
developing a wrapper for LIBNODAVE [8], an open
source library to access Siemens PLCs.

RADE IN THE LHC DASHBOARD
The LHC Dashboard project aims to provide a single

entry point to the monitoring data collected from the
experiments and equipment associated with the LHC.

The Dashboard collects information from multiple
sources, treats the data and renders it as a set of web

Figure 2: RADE Project Generator.

Proceedings of ICALEPCS2011, Grenoble, France WEMAU003

Distributed computing 659 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

pages. It covers various activities of the LHC making up a
complete picture of what goes on in the machine. By
using RADE in the dashboard we have managed to make
a very flexible and powerful data-mining tool where we,
with little effort, can obtain new data and display this for
our users on demand. Currently development is ongoing
using RADE for expanding the dashboard, making a fully
flexible, user driven web interface where we can render
any data from the various activities at CERN on request.
The page will consist of a large library of gadgets where
the users can select what to see in a customized view.

RADE IN HARDWARE COMMISSIONING
Hardware Commissioning is the phase where tests are

carried-out by the specialized teams to qualify the
individual systems of the LHC for operation (vacuum,
cryogenics, quench protection, interlocks, powering, etc.).
The interaction of each system and its partners are
verified and the circuit will be powered up to nominal
current [9]. This is repeated for every circuit.
Commissioning the LHC requires powerful diagnostics to
identify faults in the equipment protection systems. This
diagnostics tool, called herein the post-mortem system
(Fig. 5), has the role of grouping and analysing transient
data recorded in the LHC equipment.

The Hardware Commissioning software architecture
consists of three parts. The first is the Sequencer written
in JAVA, executing the tests. The second is the data
collection and storage. The third is the data analysis made
with RADE and LabVIEW.

With RADE the Post Mortem Framework is highly
flexible. It allows us to quickly adapt to changes and new
demands, and validate them on a set of reference tests,
when performing the crucial analysis of the LHC
equipment. All RADE facilities have been used during the
implementation of the Post Mortem analysis.

In 2011, 6092 tests where executed (Fig. 6) (3 week
campaign). From these, 3204 where automatically
approved by software using RADE.

Figure 6: HWC Dipole Tests.

ISSUES
Having a distributed architecture is highly flexible. You

can re-route clients to one server while performing
updates on the other. On the other side one is vulnerable
as well. If the server goes down, if there is a critical bug

in the software running or by any other means a problem
in the chain that blocks, all users are affected.

Since most of the software dependencies are developed
and maintained by third parties, who again have
dependencies on other repositories and machines, we
have to make sure that the source running on the server is
up to date and in synch with versions. Since the servers
are redundant, users will transparently connect to the
available source. This can be a problem since a

connection or request that manages to block the server
could potentially be re-directed to the secondary machine
and block that one as well if executing the same request.

To cope with these issues we have to constantly
analyze the system integrity and add logic, which
identifies problems and prevents them from happening.

CONCLUSIONS
The flexibility and short development time experienced

when using RADE in, amongst others, the presented
project examples show that the RADE framework is an
excellent and powerful tool that can be used to cope with
challenges in an environment that quickly and constantly
changes. One has however to take care when using a
distributed architecture since introduction of new
“features” or changes can quickly cause unforeseen
problems that affect many users. On the other side the
flexibility and convenience of having a distributed
architecture trumps the downsides by far.

Figure 4: The LHC Dashboard.

Figure 5: Post Mortem System.

WEMAU003 Proceedings of ICALEPCS2011, Grenoble, France

660C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

REFERENCES
[1] L. Evans, “The Large Hadron Collider – Present

Status and Prospects”, IEEE Trans. Appl.
Supercond., Vol. 10 No. 1 (2000), 44-48

 [2] A. Raimondo, “Rapid Application Development
Environment Based on LabVIEW” -
edms.cern.ch/document/904425/1

[3] Definition software framework
http://en.wikipedia.org

[4] Subversion - subversion.apache.org
[5] V. Baggiolini, “JAPC-the java API for parameter

control”, ICALEPCS2005, Geneva, Switzerland.
[6] K. Kostro, “The control middleware (CMW) at

CERN status and usage”, ICALEPCS2003,
Gyeongju, Korea.

[7] R. Soliday, “New features in the SDDS tool kit”,
PAC2003, Portland, Oregon, US.

[8] LIBNODAVE, “Exchange data with Siemens PLCs”
http://libnodave.sourceforge.net

[9] R. Saban, “LHC Hardware Commissioning
Summary”, EPAC08, Genoa Italy.

Proceedings of ICALEPCS2011, Grenoble, France WEMAU003

Distributed computing 661 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

