
SARDANA, THE SOFTWARE FOR BUILDING SCADAS IN SCIENTIFIC
ENVIRONMENTS

T. Coutinho, G. Cuní, D. Fernández-Carreiras, J. Klora, C. Pascual-Izarra, Z. Reszela, R. Suñé,
CELLS, Bellaterra, Barcelona, Spain

 A. Homs, E. Taurel, V. Rey, E.S.R.F, Grenoble, France

Abstract
Sardana is a software package for Supervision, Control

and Data Acquisition in scientific installations. It delivers
important cost and time reductions associated with the
design, development and support of the control and data
acquisition systems. It enhances TANGO [1] with the
capabilities for building graphical interfaces without
writing code, a powerful python-based macro
environment for building sequences and complex macros,
and a comprehensive access to the hardware. Just as
Tango, Sardana is Open Source and its development
model is open to collaboration, which provides a free
platform that scales well to small laboratories as well as
to large scientific institutions. The first beta version has
been commissioned for the control system of Accelerators
and Beamlines at the Alba Synchrotron [2]. Furthermore,
there is a collaboration in place, comprising Desy [3],
MaxIV [4] and Solaris [5], and several other potential
users are evaluating it.

THE DESIGN CHOICES IN THE
SOFTWARE OF THE CONTROL SYSTEM

Alba is a third generation synchrotron located near
Barcelona in Spain. The Installation of the Control
System for the Accelerators finished at the end of 2010.
The final functional tests took place during the first weeks
of 2011. Currently we are carrying out the final stages of
the installation and commissioning of the seven
Beamlines included in the first phase.

The infrastructure implicated in controls includes more
than 350 racks, 6300 equipments and 17000 cables. The
controls architecture is highly distributed, comprising
about 2500 network devices.

Tango as the Control System Middleware
Tango was chosen among the three options considered:

EPICS [6], commercial SCADA (Supervisory, Control
And Data Acquisition) and Tango. At that time, the
commercial SCADAs were not adapted to the
requirements, and although they presented some
interesting features off the shelf (like the archiving,
trending, etc), many applications needed to be developed
anyway, and a non negligible effort needed to be
dedicated to integrate motion, synchronization,
sequencers, etc. In other words, they were not a solution
per se, but to be combined with EPICS, Tango or other
toolkits.

Sardana: the Scientific SCADA Suit
The other way around, both Tango and EPICS have

various choices as graphical toolkits. However, they both

lack in some way an integrated development and runtime
environment as commercial SCADAs offer. But on the
other hand, commercial SCADAs did not fulfil the
requirements either. In several installations, like
synchrotrons, we find a large control system for the
particle accelerators with different subsystems such as
vacuum, radio frequency, power supplies, diagnostics and
protection systems, and many “smaller” control systems,
one per experimental station. They usually have
significantly different requirements.

We needed a flexible graphical interface, allowing
multiple clients, with many specific capabilities such as
diffractometers control, and above all, a powerful
sequencer. Many of these characteristics are implemented
in SPEC [7]. However, SPEC has some limitations in the
Graphical interfaces and in the capability for managing
multi-clients. Therefore at that point we decided to start a
development of a SCADA for scientific institutions:
Sardana [8]. In order to facilitate its adoption, Sardana is
built on widely available Open Source technologies and it
is itself distributed under the Lesser General Public
License [9]. Nowadays it has already been exported
outside Alba, and other institutes like Desy or MaxLab
are participating in the effort.

Figure 1: Few views and widgets of the Sardana´s
Human-Machine interfaces.

Sardana provides optimized access to hardware, macro
execution, software synchronization, generic graphical
interfaces, and access to save/restore facilities (Fig. 1). It is
mostly developed in Python. It has a Core in charge of
managing the hardware: the “Device Pool”. It has also a
powerful sequencer which handles macros, scans, series,
loops, etc: the “Macroserver” (Fig. 5). This is imperative in
 any

experimental station in a synchrotron, and extremely

useful in all cases.

Proceedings of ICALEPCS2011, Grenoble, France WEAAUST01

Software technology evolution 607 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

HUMAN MACHINE INTERFACES
The Graphical User Interfaces (GUIs) are developed in

a framework called Taurus [10]. It is written in python
and built on top of PyTango [11] and PyQt4 [12]. The
Command Line Interface (CLI) is based on IPython and
makes extensive use of Taurus as well. It is known as
“spock”
appearance, standard macro names, and the syntax of
SPEC command line have been adopted. This is an
important point, because many Synchrotron users are
familiar with SPEC, considered already a de facto
standard.

Developers can create Taurus applications from the
standard Qt designer benefiting from a catalogue of
Taurus widgets which makes the task easier (Figs. 2 and 3).

Figure 2: Taurus provides a complete catalogue of
widgets.

But the aim is skipping the programming part if it is not
needed. Sardana can be setup by “only configuring” the
different components. Taurus provides an utility called
TaurusGUI which produces standard GUIs from simple
configuration files. This utility is typically used to
generate standard interfaces for Beamlines. By just
configuring a few parameters, a GUI is created for a given
Beamline, including widgets for managing and launching
macros and sequences, a synoptic view of the system,

Figure 3: Taurus a highly configurable and customizable
standard GUI for Sardana.

panels for controlling the instruments of the Beamline,
graphical elements for monitoring values, etc. All these
elements are presented in a highly customizable interface
which allows the user to create different “perspectives”
for different tasks. The elements of the GUI can be re-
arranged by drag&drop, and new elements can be added
just as easily without leaving the running GUI.

SEQUENCER, MACROS, MOTORS AND
SCANS

Sardana provides a standard catalogue of reusable
procedures (macros) and sequences for performing
specific tasks such as scanning, acquiring data,
controlling motors, etc. Besides, it offers the templates
and tools for creating and maintaining a user repository of
macros.

Although the names of the macros and the syntax might
look compatible with SPEC, unfortunately, the
differences in the technologies, parsing, grammars and
hardware interfaces, made impossible to keep the
compatibility with the existing SPEC macros. Hence,
SPEC and Sardana are not compatible and macros can not
be interchanged between them.

Macros are executed in a central process, called
Macroserver. Typically there is a Macroserver in a
Sardana installation, although there can be more than one
if the application requires it.

Macros are python classes. They are executed and
sequenced in the Macroserver, and can also be edited and
debugged under its supervision.

Both Taurus based GUIs and CLIs (like spock) connect
to the Macroserver through a TANGO object called the
“Door”. It is through this access point that macro
execution can be controlled from outside the
Macroserver. A Macroserver can have multiple doors but
each door can only run a single macro at a time.

Figure 4: spock: The Command Line Interface of Sardana

When connected to a Macroserver, spock is fed with
meta-information about the known macros and elements
that are part of Sardana. This way, it can provide features
like context sensitive word completion, command history,
macro error handling and debugging. Graphical interfaces
also receive this information enabling powerful widgets to
be constructed .

which provides tab completion, history, etc. or from a
graphical interface, having, favourites, recently used, etc.

 (Fig. 4), and it was highly inspired on SPEC. The

 Macros can be executed from the spock command line,

WEAAUST01 Proceedings of ICALEPCS2011, Grenoble, France

608C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Sequences are batches of macros. They can be easily
created from the graphical user interface and also
managed as favourites. One does not need to have notions
of programming to create a sequence.

THE CORE
The core of Sardana is the so called “Device Pool”. It

is not only responsible to abstract specific hardware
access but also to make sure this access is done as
efficiently and as synchronized as possible. Hardware
abstraction is possible by providing a set of interfaces to
the outside world: Motors (discrete, continuous or
pseudo), experimental channels (scalar, 1D and 2D or
pseudo) and communication channels. Communication
with specific hardware is achieved through the
implementation of plug-ins known as “controllers”. They
can be written in Python or C++. A controller type exist
for each interface supported by the Device Pool. When
writing a controller, one must obey a specific interface in
order for the controller to be considered valid. Controllers
can be as simple as a mapping to another tango device
server or as complex as a 4C diffractometer.

Figure 5: Conceptual design of Sardana.

NEXT STEPS AND STRATEGIC PLAN
In terms of strategy, we could publish the following

mission statement: “Produce a modular, high
performance, robust, and generic user environment for
control applications in large and small installations”, and
the vision: “Make Sardana the generic user environment
distributed in the TANGO project and the standard basis
of collaborations in control”.

Although Sardana has been used for the commissioning
at Alba, and is installed and running in all Beamlines, is
still in an early stage. There is a new release foreseen by
the end of 2011, which will improve the experiment
configuration, plotting, access to data files and overheads.
Looking ahead to the version of 2012, our efforts will be
focused among others in the configuration tool, full
integration of 2D detectors, and continuous scans
frameworks.

CONCLUSION
SCADAs are extensively used in industrial

applications. They are optimized for access to
Programmable Logic Controllers (PLCs), and popular
field buses like Siemens Profibus, etc. Today there is no
such a thing for scientific applications for which
requirements are drastically different. Labview from
National Instruments is a closer example, but it still lacks
many important features, like complex “procedures”. For
example, Beamlines have devices such as diffractometers,
combined with detectors, which needed to be scanned
with monochromators, which are not well managed by
Labview. SPEC manages all these cases, but it has poor
Graphical Interfaces, and it does not allow concurrency
and arbitration. There is place for improvement in this
domain, and Sardana has included all these features in the
requirements. There are still a considerable number of
features pending and a great effort is still needed in this
field. But Sardana is following the correct way, and
several other labs (mostly synchrotron) have already
expressed their interest.

CONTRIBUTIONS
Many people have worked in this project. In particular

J. Ribas, who had a great contribution to the original
“pytauico” and “pytauiwi”, which was the seed for the
current Taurus package. T. Nuñez and T. Kracht at Desy,
D. Spruce and K. Larssen at MaxLab for the early tests
and contributions to the Sardana device pool and
Macroserver.

REFERENCES
[1] http://www.tango-controls.org. The TANGO official

website.
[2] http://www.cells.es. The synchrotron light source ALBA.

Cerdanyola del Vallès, Barcelona. Spain.
[3] http://www.desy.de. Desy: Deutsches Elektronen-

Synchrotron. Hamburg, Germany.
[4] http://www.maxlab.lu.se. MaxLab. National Electron

Accelerator Laboratory for Synchrotron Radiation
Research, Nuclear Physics and Accelerator Physics. Lund,
Sweden.

[5] Piotr Pawel Goryl et al. “Solaris Project Status and
Challenges”. Solaris Synchrotron, Krakow, Poland.

[6] http://www.aps.anl.gov/epics. EPICS official webpage.
Experimental Physics and Industrial Control System.

[7] http://certif.com. SPEC official web page.
[8] http://www.tango-

controls.org/static/sardana/latest/doc/html/users/index.html
The official Sardana webpage.

[9] http://www.gnu.org/licenses/lgpl.html GNU Lesser
General Public License.

[10] http://www.tango-
controls.org/static/taurus/latest/doc/html/users/index.html.
The official Taurus Documentation

[11] http://www.tango-
controls.org/static/PyTango/latest/doc/html/users/index.ht
ml. The official PyTango Documentation

[12] http://www.riverbankcomputing.com/software/pyqt/intro
PyQt: the official website.

Proceedings of ICALEPCS2011, Grenoble, France WEAAUST01

Software technology evolution 609 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

