THDAULTO01

Proceedings of ICALEPCS2011, Grenoble, France

MODERN SYSTEM ARCHITECTURES IN EMBEDDED SYSTEMS
T.Korhonen, PSI, Villigen, Switzerland

Abstract

Several new technologies are making their way also in
embedded systems. In addition to the FPGA technology
which has become commonplace, multi-core CPUs and
/O virtualization (among others) are being introduced to
the embedded systems. In this paper we review the trends
and discuss how to take advantage of these features in
control systems. Some potential application examples are
discussed.

THE DOMINANT TRENDS

Many of the technical advances in the computing
industry are driven by the needs of the applications in the
general information technology, Internet and the web,
telecommunication and the entertainment industry.
Common for these markets are that the data volumes are
increasing, as well as need for of data communication
bandwidth and processing power. To respond to these
demands, the computer and electronics industries have
come up with several technology solutions.

The embedded and control system applications are in
some areas in the leading edge of technology, but in other
areas the technology used in the general computing is
coming into the applications with a delay. This delay is to
a large extent due to the nature of the embedded market:
the application life cycle is much longer than in the
general computing market.

The general trends of the computing market are not
essentially new but have practically always been to a)
provide more computing power and communication
bandwidth and b) use the hardware investment in the most
efficient way. In the next chapters we take a look at these
solutions and what they could bring to the field of control
systems. This is not always obvious and it is a time-
consuming process to implement this into the embedded
infrastructure.

NEED FOR SPEED

Computers are never fast enough. Each advance in the
processor technology has taken us a step further, but as
soon as a solution has become available, a number of
applications have arisen that use up all the available
power and require even more.

As increasing speed just by making the CPU clock rates
higher has become impractical, the major method is now
increasing the parallelism. This is happening in a number
of ways, most apparent is putting multiple processors in
one unit. However, this is not the only way to implement
parallelism.

Speed by Parallelization

Starting at the lowest level of parallelization, FPGAs
have been around for some time and have become very
common in embedded applications, too. The recent

1260

applications have started to use them as processing
engines instead of glue logic. An FPGA can be the
ultimate tool for fine-grained parallel processing if the
tasks in hand match the model. The downside of using
FPGAs is that the application development is work-
intensive, as the abstraction level of the tools is low. To
implement an application in a FPGA the problem needs to
be well constrained. FPGA is also a fairly expensive
solution in many cases.

In the processor world the obvious way of introducing
parallelism is to increase the number of processing units
and divide the computing tasks between them, Multi-core
CPUs have emerged in the recent years, being now the
standard in server and desktop machines but have also
recently entered the embedded market. There are
essentially two different directions in multicore
implementations: having a number of identical cores
(typical in desktop computers) or having a mix of general
and special purpose processors on the same chip, like the
TI OMAP[1], which combines a (dual-core) ARM
CPU,DSP and GPU on the same chip. This kind of
heterogeneous multicore processors could be very
interesting in applications that need floating-point and
mathematical operations in the embedded level.

As an example of a multicore CPU targeted for the
embedded market, the QorlQ SoC series by Freescale [2]
is displayed in Fig. 1. In addition to a variable number of
processor cores, it also integrates specialized function
accelerators on the same chip, for instance a TCP packet
accelerator that implements a part of the TCP packet
processing in hardware. It also integrates Gigabit Ethernet
transceivers and three PCI express endpoints plus a
number of specialized function controllers like an
encryption engine.

QorlQ P2020710 Communication Processors

Pumus Arehitucsurs®
6002 Gorn
KE e 512 KB B4
Lol SE | e Mamoey Conirollar
[musaza P20-Bieghe Gore Dy
i Goherent System Bus.

TOM
SO

[OUART Saceiny
T a1
5P, GRID 16E

A-Lane 2.5/ GHz SeDos

T Core Comglen (2FU and L2 Gache}
B Acoderators and Momory Control

[Basio Perpherals and Inisrconnect
[Motworking Eksmns.

Figure 1. Freescale QorlQ® P2020 block diagram

Interconnects

To make advantage of the multiple processing units, the
units need to communicate efficiently with each other.
This has traditionally been implemented with multidrop
buses. However, a bus scales very badly with the
increasing number of processing units. For this reason, the

Embedded + realtime software

Proceedings of ICALEPCS2011, Grenoble, France

interconnects are more and more going to the direction of
serial point-to-point links. In dedicated applications these
links have been used already a long time. General-
purpose interconnect protocols are now being included
directly in processors so it makes a lot of sense to use
them in embedded applications, too. The most prominent
interconnect protocols are Ethernet (obviously) and PCI
Express. The other protocols cater for specialized needs
and what will happen with them in the long term is not
that obvious. The two prominent protocols are however
likely to have a large share in applications and be widely
supported long into the future.

Controls Applications

A typical embedded application consists of tasks for I/O
and some level of processing. As the processing power in
the low level has grown, more and more applications have
migrated to the low level. This has several advantages, as
the data can be pre-processed right down at the source and
only the relevant data needs to be passed on to the higher
level. To achieve this in a low level embedded processor,
there are a number of options. One can implement
applications in a FPGA and take advantage of the real
parallelism possibilities and very hard real time
capabilities. This can however be very labour-intensive.

For the processing with a CPU, the obvious way is to
try to take advantage of the multiple cores. A relatively
simple way is to take advantage of a symmetric
multiprocessing (SMP) OS and let it take care of
distributing the load between processors. This can work
quite well when the workload consists of different tasks
that have little or no relation to each other. However, for
embedded applications this is often not the case. The
other possibility is then to dedicate computing cores for
different tasks, or define certain tasks to run on different
cores. This can help in management and partitioning of
the workload.

The SoCs that provide different specialized cores can
also have interesting possibilities. For instance the OMAP
processors with their special processors could be efficient
when the workload is a mixture of heavy floating point
and matrix operations plus running general purpose tasks
(I/O handling, network tasks etc., for which a general
purpose core like an ARM is well optimized. Dedicating
coprocessors for different tasks would also enable
applications where a tight connection between a
modelling environment and an embedded controller is
useful. The modelling can happen in an workstation and
the modelled application can be run on a dedicated core,
where it would not need to disturb the general purpose
tasks, and restarted as wanted.

Using GPUs as coprocessors for doing intensive matrix
manipulations is also a possibility that is becoming more
and more common.

QUEST FOR EFFICIENCY

Even if the price of computing equipment has come
down, it still always costs too much. One of the long-

Embedded + realtime software

THDAULTO01

standing ideas (and implementations) of taking the most
benefit of the installed equipment has been to share the
computing resources between several applications.
Instead of each service running on its own machine,
sharing the time of the hardware by running several things
in parallel can improve the utilization of the hardware.

Virtualization

However, even more than optimizing the use of the
hardware the problems facing IT departments now are
physical space in the data center, power/cooling costs,
system maintenance and management. The performance
of servers has also increased to a point where there is a
large amount of idle capacity. With virtualization, IT
departments can utilize that spare capacity rather than
adding a new physical server to support a new
environment.

Virtualization is traditionally implemented with the
help of a hypervisor that controls and shares the
computing resources at a low level. The hypervisor is
usually a thin software layer below the guest operating
system. As the number of cores in CPUs increases, the
task of a hypervisor gets more and more demanding and it
self starts to become a bottleneck for the effective load
sharing. Thus the functions of a hypervisor are
increasingly being implemented in hardware. The need is
most obvious and pressing in the area of I/O.

1/0 Virtualization

The concept of I/O virtualization [3] is fairly recent and
its meaning may not be immediately obvious. What this
means is the implementation of the tasks of a software
hypervisor in hardware to improve the efficiency. When
many guest systems want to share the access to I/O
modules the supervisor becomes a bottleneck when all the
accesses have to be arbitrated. For instance, the SR-IOV
standard within PCI express defines so called virtual
functions in the devices. The guest systems can be given
direct access to the hardware and the need for data
manipulation by the hypervisor is eliminated.

SHARE AND CONQUER

Being a discipline with long development cycles, most
of the software infrastructure in the control systems field
is still oriented towards the single-processor model. Only
recently activities to address have been initiated; some of
them presented also in this conference. For instance the
handling of timing of real-time processes: in a single-core
system

The rise of open-source software has had a big impact
on the way systems are built. Direct access to the source
code has enabled implementation of functionality that was
previously an area where only proprietary solutions
existed. In addition, several working groups are defining
open standards to make the utilization of multi-core
systems easier. A notable standardization body is the
Multicore Association [4], which has several working
groups working on standardization of APIs in different

1261

THDAULTO01

areas. For instance MCAPI working group provides a
standardized API for communication and synchronization
between closely distributed cores and/or processors in
embedded systems. The working group has formed two
subgroups. One is working on ‘zero copy’ functionality,
including bidirectional interaction between ‘application
and application’ using shared memory and bidirectional
interaction between ‘application and driver’. A second
subgroup is focused on interoperability.

The MTAPI™ working group is charged with creating
an industry-standard specification for an API that supports
the task coordination on embedded parallel systems.

The Tools Infrastructure Working Group's key objective
is to improve the interoperability between the different
tool solutions for the development of embedded multicore
systems, has been predominantly continuing its work on
the Common Trace Format (CTF) specification. The goal
of this work is seamless correlation of data coming from
different types of tracers (e.g. software instrumentation,
hardware instruction/data trace) as well as divergent
execution contexts on multiple cores or systems.

PUTTING IT TOGETHER

Case for Parallelization and Multi-Core

There is no other way than going to multi-core —
practically all modern CPUs have more than one core and
the number will increase. However, the (real-time) control
system software that runs on embedded processors has
been written using single-core machines and while one
can introduce operating systems that provide SMP support
out of the box, just letting the OS to do the task
assignment will cause some surprises in how the system
behaves. The timing of tasks will inevitably change if
tasks that have been assumed to be sequentially
scheduled, are running truly parallel in separate cores.

Having said that, there are several cases where having
multiple cores available can bring true advantages.

Data Streaming Application

One of the applications we are working on is a
processing system for a low-level RF controller. The
basic structure of the system is as shown in Fig. 2. The
system collects data from several ADCs, processes them
and does feedback of the RF system. The platform to do
this is the IFC 1210 board that has recently been
developed in collaboration between PSI and 10xOS SA
[5]. The board is based on a PCI express communication
infrastructure, on which several processing units are
connected. The board has a powerful Virtex-6 “Central”
FPGA, a dual-core Freescale P2020 QorIQ SoC CPU
unit. The board in in VME format, to be compatible with
the large existing installation base at PSI, but with an
innovative use of the PO connector allows PCI express
links to be routed through the backplane, allowing us to
create a multi-board system by connecting several boards
together. The VME bus can be used as a control plane
interface, but the system is not limited by the bus speed.

1262

Proceedings of ICALEPCS2011, Grenoble, France

Analog data in (250 MSPS, 16 bits)
(20 channels, 10 Gbyte/sec in total)
ADC J

ADC
FMC FMC

\/J Feedback processmg

Analog data out

ik
FMC

FPGA e —p FPGA
/) (core 1) i
PCle CPU |——2> Ethernev
(core 2) Channel Access

Figure 2. A data streaming and processing application for
low-level RF control

The bulk of the raw data processing in this system takes
place in the FPGA, however the control algorithms are at
least in the first stage planned to be run on the general
purpose PowerPC cores, that are much more suitable for
interactive development. This makes the prototyping
cycle much shorter. FPGAs do not easily lend them for
scripting, even with the most modern tools.

The idea here is to take advantage of the multi-core
CPU by clear partitioning of the tasks. At least in the
development stage one could even take advantage of
virtualization in the sense that the algorithms could run on
a desktop machine which is connected to the field
hardware via a long-distance PCI express link. The plan is
to accelerate the development cycle by supporting direct
access from modelling tools for developing and testing
the feedback algorithms. The preferred tool for this is
Matlab/Simulink. We plan to integrate it with the
IFC 1201 board that we can directly download code from
the tool to the system under test.

Accelerator data

111

Figure 3. Striping data acquisition

Striping Data Acquisition

One conceivable application could be high-speed
acquisition of data, e.g., images from a high-speed sensor
to be processed in parallel. When the data cannot be
processed fast enough by a single unit, it can be streamed
to multiple units and the results stored in parallel (see
Fig. 3). Many experiments in physics and X-ray FELs
could fit this kind of model where each “event” is in
principle an individual unit. If the imaging device would
support I/O virtualization, the load could be effectively
shared between multiple units. Usually the sensor data

Embedded + realtime software

Proceedings of ICALEPCS2011, Grenoble, France

needs also to be merged with data from the accelerator
(e.g., pulse number, beam characteristics, etc.) to enable
later analysis of the data.

Case for Virtualization

For controls applications, configuration management is
probably the most compelling reason why one would
consider virtualization.

The trend has been to put the computing closer to the
equipment. With the fast interconnects and protocols
available, one could think of revising the trend. It might
be feasible to put the computing infrastructure together in
a server room instead of spreading it out on the field. This
would have the advantages that the management becomes
easier, granularity of allocating processing power to the
applications can be improved: not all I/O processors need
to be the dimensioned according to the highest
requirement, and on the other hand more power can be
allocated where it is needed. In a sense this has already
been happening since the EPICS software has allowed us
to run the IOC core software on a server machine.
Moving from the “soft IOC” would involve adding the
direct (virtualized) I/O to the system and one could even

Embedded + realtime software

THDAULTO01

implement real-time systems on a remote server. Using
PCI express as the interface protocol, the infrastructure
for device drivers would be easily usable in such an
environment.

CONCLUSIONS

The advances in computing sometimes enter the
embedded world with a delay. It is also often not obvious
how to take advantage of the technologies that have been
targeted to a different domain. However, after all the
requirements are not that different, and by embracing the
technology they can bring a lot of benefits to the
embedded applications.

REFERENCES

[1] OMAP Application Processors; http://www.ti.com/omap.

[2] Freescale Corporation, www.freescale.com

[3] IO Virtualization specifications. http://www.pcisig.com/
specifications/iov/.

[4] Multicore association, www.multicore-association.org

[5] IOxOS SA, www.ioxos.ch

1263

