
W. W. Terpstra, GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany

Abstract

The steady improvements in Field Programmable Gate
Array (FPGA) performance, size, and cost have driven their
ever increasing use in industry, science, and IT. As FPGA
sizes continue to increase, more and more devices and logic
move from dedicated chips to FPGAs. For simple hard-
ware components, the savings in board area and chip count
are compelling. For logic involving dynamic memory and
complicated control flow, the trade-off is not as clear.

Traditionally, this has been the domain of CPUs and soft-
ware programming languages. In hardware designs already
including an FPGA, it is tempting to remove the CPU and
implement all logic in the FPGA. However, if that logic
is then be implemented in the more constraining hardware
description languages, it cannot be as easily debugged or
traced, and typically requires significant FPGA area. For
performance-critical tasks, this trade-off can make sense.
However, for the myriad slower and dynamic tasks, soft-
ware programming languages remain the better choice.

One great benefit of a CPU is that it can perform many
tasks. Thus, by including a small “Soft-CPU” or softcore
inside the FPGA, many low performance tasks can be ag-
gregated into a single component. These tasks may then re-
use existing software libraries and debugging techniques,
while retaining ready access to the FPGA’s internals.

This paper discusses requirements for using Soft-CPUs
in this niche, especially for the FAIR project1. Several
open-source alternatives will be compared and recommen-
dations made for the best way to leverage a hybrid design.

BACKGROUND

FPGA chips allow developers to implement custom cir-
cuitry. A developer designs his desired circuit in a Hard-
ware Description Language (HDL), and a compiler trans-
lates this into the underlying gates and wires required by
the design. The target FPGA chip can then be programmed
with the resulting bitstream. A given FPGA has a limited
number of wires and gates and when a design is loaded, it
consumes some of the area on the chip.

Developers organize their HDL project into components.
A component corresponds roughly to a chip design, with
internal logic and input/output pins. For example, a com-
ponent might implement a memory chip with address and
data pins. Each component can be instantiated multiple
times, like placing several chips with the same specifica-
tion. These instances can in turn be wired together to pro-
duce a larger component, akin to wiring several chips to-
gether on a card. The resulting amalgam component will

1A new international accelerator facility for antiproton and ion beams.

FPGA SoC
Optical Port

DDR

PCIe Port

Controller

MAC

Bridge

Internal Bus

CPU

DMA

cache

fifoXfer

ALU

Figure 1: A SoC including a Soft-CPU.

have it’s own input/output pins. This hierarchical composi-
tion results in a tree of nested component instances.

Typically, the top-most component or root has its in-
put/output pins mapped to the physical pins on the FPGA.
The FPGA’s pins are then physically wired to external chips
mounted on the board and the connectors required by the
type of device manufactured. For example, in the FAIR
project, our control devices have FPGA pins connected to
a DDR memory chip, an optical network transceiver, and a
PCI express connector.

Within the FPGA, to ease interconnection of several
components, developers often use a bus protocol. Just like
the PCI express bus of a PC, this allows developers to plug
together multiple components without needing to modify
their designs. The resulting FPGA is called a System on
Chip (SoC), because it is effectively an entire computer in
a single chip. The key advantage of a bus is that it allows
multiple logical connections. Where a simple wire between
components only connects those two components, a bus al-
lows n master components to control m slave components,
resulting in nm logical connections. Figures 1 and 2 illus-
trate two SoC designs.

Within a SoC system, one can include a CPU. This CPU
is typically a bus master which controls the slave devices
on the SoC bus. As the CPU is not a physically distinct
chip, and is implemented in HDL within the design, it is
called a Soft-CPU or SoftCore.

This paper will cover: when it makes sense to include
a Soft-CPU, what they require from the memory subsys-
tem, an analysis of the best available Soft-CPUs, and our
recommendations.

THE CASE FOR SOFT-CPUS IN ACCELERATOR CONTROL SYSTEMS

THCHMUST05 Proceedings of ICALEPCS2011, Grenoble, France

1252C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

WHEN TO USE A SOFT-CPU

Soft-CPUs are often, but not always, a good thing to in-
clude in a SoC design. On a modern FPGA the area they
consume is relatively minor; an LM32 Soft-CPU uses 2-4%
of a EP2AGX125, depending on selected features. How-
ever, they typically impose a hefty memory cost, discussed
later. Furthermore, they introduce another master running
on the bus, which may not be desirable due to arbitration.

Comparison to Custom HDL

Any functionality one can implement in software, one
can also implement directly in HDL; it’s just more work.
For example, memcpy(dst, src, len) run on a Soft-
CPU can move data from one slave device to another. In
HDL one could implement a DMA controller to perform
the transfer. Broadly speaking, the advantage of HDL is
raw speed and software is ease of development. More
specifically, the strengths of a Soft-CPU are:

� Soft-CPUs can run traditional C/Fortran/Java code.
They can re-use existing libraries and applications.

� A single Soft-CPU can implement many features with
one component; one processor can run multiple pro-
grams. In HDL each feature requires more circuitry.

� Execution order is easier in software. In HDL a state
machine tracks the current operation. In software this
is implicit in the program’s instruction pointer.

� Dynamic resource management is easier in software.
Software systems have a stack and a heap. Hardware
only has static (in the C/C++ sense) variables.

� Software debuggers can single-step programs and in-
spect/modify every variable. Hardware signal tapping
captures execution after matching crude triggers and
can only inspect new variables with a recompile.

� Software is much slower. Hardware is always parallel,
executing many things at once. However, Soft-CPUs
can leverage this parallelism with custom instructions.

� Soft-CPUs require a memory subsystem.

� Soft-CPUs require an additional developer toolchain.

It is important to understand that Soft-CPUs and cus-
tom HDL are not mutually exclusive; the above pro/con
list presents a false dichotomy. One of the key strengths of
a Soft-CPU compared to an external CPU is that it is di-
rectly connected to customizable hardware. The question
is not whether or not to use custom HDL. When using an
FPGA that is a given. The question is if any of the required
functionality could benefit from a Soft-CPU. If a Soft-CPU
is useful, then a hybrid design should be used.

FPGA SoC
Optical Port

DDR

PCIe Port

Controller

MAC

Bridge

Internal Bus

Bridge

CPU

Figure 2: A SoC connected to an external CPU.

Comparison to an External CPU

If a CPU is required, instead of putting it inside the
FPGA, one can attach it as an external chip. See, for exam-
ple, Figure 2. All of the same trade-offs for custom HDL
that apply to a Soft-CPU apply to an external CPU. How-
ever, Soft- and external CPUs have their own trade-offs.

The main advantage of an external CPU is performance.
Soft-CPUs are as simple as possible to minimize the FPGA
area required. Generally, their designs mimic RISC archi-
tectures from the mid 1980s. Modern superscalar CPUs
are significantly more complex and much faster clock for
clock. Furthermore, the fairly decent EP2AGX125 FPGA
run an LM32 Soft-Core at 200MHz compared to the typi-
cal 3GHz clock rates of a modern CPU. Thus, an external
CPU will dispatch over 30 times as many instructions as a
Soft-CPU. Nevertheless, for a particular problem, custom
hardware can be faster still and a Soft-CPU will be directly
connected to that hardware.

Since the main advantage of an external CPU is raw
performance, it will be run at a faster clock rate than the
FPGA. Otherwise, one might as well use a Soft-CPU and
save money. In this configuration, the trade-offs are:

� The Soft-CPU solution costs one less chip.

� An external CPU issues instructions > 30× faster.

� The Soft-CPU can use custom instructions.

� The external CPU runs a standard OS and toolchain.

� A Soft-CPU operates synchronously with the FPGA.

– It is directly connected to the internal bus. There
is no bridge, no variable latency.

– It is in the same clock domain as the devices.

When money is no object, the main advantage of a Soft-
CPU is deterministic execution speed; the Soft-CPU exe-
cutes instructions at a known rate. In a hybrid design, it is
possible for a custom HDL component to dispatch work to
the Soft-CPU and be guaranteed to receive the result after
a fixed number of cycles. Similarly, when the Soft-CPU
pushes data to a device known to use 5 cycles, it doesn’t

Proceedings of ICALEPCS2011, Grenoble, France THCHMUST05

Embedded + realtime software 1253 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

need to synchronize or check for completion. It just burns
4 cycles before reading the result. This tight integration
makes it possible for a Soft-CPU to fill the not-easily-done-
in-HDL gaps of a mostly custom HDL solution.

MEMORY ARCHITECTURE

The real cost of adding a Soft-CPU to a design is not
FPGA area, but memory. The more complex the logic that
the Soft-CPU executes, the larger the executable it must
run. While it is true that a single Soft-CPU can implement
many features in one component, the hidden cost is this
increasing memory foot print.

Unfortunately, a larger memory footprint comes with de-
creased determinism. As the memory requirements grow,
the memory must move further from the CPU. As the mem-
ory moves further from the CPU, the memory hierarchy
deepens. Caches make an otherwise straight-forward pro-
gram take an unpredictable amount of time. This weakens
the greatest strength of a Soft-CPU. Unfortunately, if the
problem requires more memory, this is unavoidable.

Certainly, one could imagine running a Soft-CPU with
an SRAM chip for memory and no cache. An SRAM chip
will take at least 4 cycles to provide each instruction to the
Soft-CPU. FPGA internal cache memory could provide it
in 1 cycle. If one runs the Soft-CPU with no cache or
prefetch, it is exactly 4 times slower. With cache, it is at
worst 4 times slower and at best full speed. Omitting the
cache doesn’t improve the deadline behaviour of the Soft-
CPU; it just makes it (much) slower on average. Thus,
when the Soft-CPU’s memory footprint exceeds the mem-
ory available at one level in the memory hierarchy, that
level becomes cache for the next, larger level.

The important message is that one size does not fit all
problems. A good hybrid design uses the smallest amount
of memory possible, and thus the least levels of cache.

Another factor which can impact determinism is the bus
itself. If the Soft-CPU must share access to the memory
with other devices, it may need to wait for those devices
to finish their access. We strongly recommend that a hy-
brid design dedicate a memory port exclusively to the Soft-
CPU’s instruction bus. The data bus is much less frequently
used (only on load/store instructions) and can share access
with other devices as long as access is carefully scheduled.

MMU: Yes or No

A common feature found on modern CPUs is the Mem-
ory Management Unit (MMU). This introduces a level of
indirect addressing which is needed by modern operat-
ing systems to implement inter-process memory protection.
Some Soft-CPUs always include an MMU, some don’t,
and for some it is configurable. An MMU implementation
is typically tightly integrated with the CPU cache system.
Usually a Translation Lookaside Buffer (TLB) maps vir-
tual addresses to physical addresses. When the TLB cannot
find an entry needed, it must be refilled, introducing an ad-
ditional source of non-deterministic delay. The trade-offs:

� Standard OS supported, meaning more compatability.

� Supports efficiently garbage collected languages.

� Fault isolation and memory error detection.

� TLB misses add non-deterministic execution delay.

� Memory required for page table management.

The main advantages of an MMU only apply to large
software systems. Both a standard OS and a garbage
collected runtime entail significant memory consumption.
Furthermore, both of these scenarios make steep conces-
sions in pause times. If one uses a Soft-CPU with an MMU,
one has almost given up the main advantage of a Soft-CPU
compared to an external CPU. Both the MMU and atten-
dant cache system introduce execution pauses, as does a
standard OS and/or garbage collected runtime. Aside from
cost, little remains to recommend a Soft-CPU + MMU.

SOFT-CPU SHOWDOWN

To choose a Soft-CPU for use in the FAIR project,
we made a list of requirements that candidate Soft-CPUs
should fulfill. In order of decreasing importance:

• Open source HDL: port to many FPGA manufactur-
ers, add required features, trace and debug problems.

• Toolchain support. No compiler, no point.

• Configurable memory subsystem.

• Mature and well documented.

• Size and Speed.

• Debugger support.

We only considered CPUs which met at least the first two
requirements. The surviving candidates we investigated are
summarized in Table 1.

RECOMMENDATIONS

Inspecting Table 1 makes pretty clear that the only rea-
sonable options are the LEON3, LM32, and OpenRISC
processors. All three processors are RISC and have sim-
ilar area and performance. The other open source offerings
are either incomplete, poorly documented, or too large for
an FPGA (S1). Of the runner ups, the ZPU is probably the
most interesting due to its smaller foot-print. However, it
is significantly slower clock-for-clock than the three main
candidates which issue most instructions in one cycle.

For a hybrid design, the LM32 is the clear winner. It
has very clearly specified instruction timings and is de-
signed to work without an MMU. It’s memory subsystem
is very configurable; the instruction bus can use either in-
ternal FPGA memory, an 1/2-way instruction cache, or di-
rect bus access. This makes it easily accommodate designs

THCHMUST05 Proceedings of ICALEPCS2011, Grenoble, France

1254C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

CPU Memory Subsystem Documentation Area Speed Debugger
LM32 optional(I+D cache) Very Good [4, 5] 2000 200MHz yes
LEON3 optional(I+D cache + MMU) Excellent [1, 2, 3] 3000 150MHz yes
OpenRISC I+D cache + MMU Adequate [6, 5] 3300 150MHz yes
ZPU none Poor 1000 200MHz no
ZET none Poor 3000 60MHz no
S1 I+D cache + MMU Sparc [3] 45000 - -
CPU86 none Non-existant 3800 100MHz no
Plasma none Non-existant - - no
Navre none Non-existant 1000 200MHz no
pavr none Poor 2400 120MHz no
aemb none Non-existant 1100 140MHz no
openfire none Non-existant 1300 160MHz no
pacoblaze none Poor 650 200MHz no
yasep none Poor - - no
dspuva16 none Non-existant 340 250MHz no

with different memory requirements. Finally, it is architec-
turally much simpler than a sparc. A hand-crafted operat-
ing system can easily fit in under 1kB of memory, or it can
just be used directly as a micro-controller.

Both the LEON3 and the OpenRISC are well suited to
running a full Linux operating system. However, the only
thing which recommends them over using a much faster ex-
ternal CPU is cost. When running linux, the operating sys-
tem, MMU, and cache all conspire to eliminate the benefit
of a direct connection to the FPGA bus. An SoC bridged
over PCIe to an external CPU would likely meet tighter
real-time deadlines.

In conclusion, given the low area cost of a Soft-CPU and
the many potential benefits, it seems wise to plan on in-
cluding a Soft-CPU in most SoC designs. As long as the
executable code can fit in FPGA memory, the design im-
pact is low. At the GSI, we have now used the LM32 in
several designs and found it very useful not only in off-
loading low-priority tasks from custom HDL, but also in
debugging attached hardware devices.

APPENDIX: LM32 FEATURES

A quick overview of our recommended Soft-CPU:

• 6-stage pipelined RISC architecture

• 32-bit data path and instructions

• 32 general-purpose registers and interrupts

• Optional instruction and data cache

• Wishbone [5] memory interfaces (instruction+data)

• Debug unit with breakpoints+watchpoints

• Can both be debugged over JTAG or internally

REFERENCES

[1] Aeroflex Gaisler, “GRLIB IP Library Users Manual”, 2010.
www.gaisler.com/products/grlib/grlib.pdf

[2] Aeroflex Gaisler, “GRLIB IP Core Users Manual”, 2010.
www.gaisler.com/products/grlib/grip.pdf

[3] SPARC Int’l, “The SPARC Architecture Manual Version 8”,
Prentice-Hall, Inc., Upper Saddle River, NJ, 1992,
www.sparc.com/standards/V8.pdf

[4] Lattice Semiconductor Corporation, “LatticeMico32 Proces-
sor Reference Manual”, August 2007,
www.latticesemi.com/documents/doc20890x45.pdf

[5] R. Herveille, “WISHBONE System-on-Chip (SoC) Intercon-
nection Architecturefor Portable IP Cores”, 2010,
cdn.opencores.org/downloads/wbspec b4.pdf

[6] D. Lampret et al., “OpenRISC 1000 Architecture Manual”,
April 2006, opencores.org/svnget,or1k?file=/trunk
/docs/openrisc arch.pdf

Table 1: Feature Breakdown of Available Open Source CPUs as Synthesized on an Arria2

Proceedings of ICALEPCS2011, Grenoble, France THCHMUST05

Embedded + realtime software 1255 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

