THCHAUST06

Proceedings of ICALEPCS2011, Grenoble, France

INSTRUMENTATION OF THE CERN ACCELERATOR LOGGING
SERVICE: ENSURING PERFORMANCE, SCALABILITY, MAINTENANCE
AND DIAGNOSTICS

C. Roderick, R. Billen, D. Dinis Teixeira, CERN, Geneva, Switzerland

Abstract

The CERN accelerator Logging Service currently holds
more than 90 terabytes of data online, and processes
approximately 450 gigabytes per day, via hundreds of
data loading processes and data extraction requests. This
service is mission-critical for day-to-day operations,
especially with respect to the tracking of live data from
the LHC beam and equipment.

In order to effectively manage any service, the service
provider’s goals should include knowing how the
underlying systems are being used, in terms of: “Who is
doing what, from where, using which applications and
methods, and how long each action takes”.

Armed with such information, it is then possible to:
analyse and tune system performance over time; plan for
scalability ahead of time; assess the impact of
maintenance operations and infrastructure upgrades;
diagnose past, on-going, or re-occurring problems.

The Logging Service is based on Oracle DBMS and
Application Servers, and Java technology, and is
comprised of several layered and multi-tiered systems.
These systems have all been heavily instrumented to
capture data about system usage, using technologies such
as IMX.

The success of the Logging Service and its proven
ability to cope with ever growing demands can be directly
linked to the instrumentation in place.

This paper describes the instrumentation that has been
developed, and demonstrates how the instrumentation
data is used to achieve the goals outlined above.

INTRODUCTION

Born out of the LHC Logging project, and operational
since 2004, the CERN accelerator Logging Service
(herein referred to simply as the “LS”) is used to store and
retrieve billions of data acquisitions per day, from across
the complete CERN accelerator complex, related sub-
systems, and experiments [1].

The LS is considered a mission critical service, heavily
relied upon to support day-to-day operation. As such the
availability and performance of this service are
paramount.

ARCHITECTURE OVERVIEW

Figure 1 shows a basic overview of the LS which is

essentially comprised of:

e Two Oracle databases: A so-called Measurement
database (MDB) where raw data from Java processes
and other Oracle databases is persisted during seven
days, and a Logging database (LDB) where a sub-set

1232

of MDB data and pre-filtered data from industrial
SCADA systems are stored on-line indefinitely.

e Distributed Java APIs are responsible for loading
data into the databases.

e A sub-set of MDB data is transferred to the LDB
using in-house developed PL/SQL code that uses a
comprehensive set of metadata to dynamically filter
the data of long-term interest.

o A powerful distributed Java API is the sole means of
extracting data from the databases, which includes a
command line interface. Applications wishing to use
the API must be pre-registered. At the time of writing
there are 100 applications registered to a
heterogeneous client community. Direct SQL access
is not permitted.

e A generic Java GUI called TIMBER is also provided
as a means to visualize and extract logged data. The
tool is heavily used, with more than five hundred
registered users.

é [}
Q
£
3
17}
‘. :
Extraction AP| 38
7 Days >20 Years
raw data PL/SQL filtered data o
filtered data o
transfer - - =}
} 1 = [0}
: ;
MDB S B Iz
2 [}
o}
0}
o
[}
ol
su | e it
T i
CNGS 3
A o
RN Y e

HES

—t— T i, eS8 _1 S
Equipment - DAQ - FEC Equipment — DAQ - PLC '

Figure 1: Logging Service architecture overview.

The Java APIs for both logging and extracting data are
significantly optimized, and run on Oracle application
servers. For data extraction clients, the fact that database
access is actually made in a distributed manner via an
application server is hidden within the Java API.

PERFORMANCE, SCALABILITY,
STABILITY ... AND USERS

The LS is a high performance service, which needs to
deal with very high data throughputs. At the time of
writing the MDB has to process approximately 5.4 billion
records/day, which equates to around 270GB/day (annual
throughput of approximately 100TB). Meanwhile the
LDB needs to persist around 4 billion records/day for

Data and information management

Proceedings of ICALEPCS2011, Grenoble, France

some 850 thousand signals. This boils down to storing
140GB per day (50TB/year) and keeping it available
online beyond the lifetime of the LHC.

The success of the LS leading to an increase in scope
beyond the LHC, together with unforeseen events
requiring more data to be available, has meant that the
current data throughput levels far exceed initial
expectations, which predicted 1TB/year during LHC
operation.

3,500

5-0ct-2011
a0 91 Terrabytes of data /
2500 3.2 trillion records /

2,000
1,500 /
1,000 /
500 /

0

Logged Records (billions)

2005 2006 2007 2008 2009 2010 2011
Year

Figure 2: Evolution of logged data.

Figure 2 shows the evolution of logged data, and
clearly illustrates how the LS has had to scale to satisfy
evolving requirements. The ability to scale in such a
manner is in no small part down to the design of the LS
[2], however instrumentation also plays an important role,
as will be explained later in this paper.

The amount of data logged only tells one side of the
story, since data is actually logged in order to be extracted
later on to support operational decisions, which often
have to be made within short time constraints; therefore
data extraction must be as fast as possible.

It is perfectly legitimate for users to ask for data
spanning long time periods and/or from long ago.
Therefore the LS must satisfy such diverse requests not
only as quickly as possible, but also whilst remaining
stable such that is can support other operations in parallel.

The determining factor in how a service performs is
always how the service is used. Experience has shown
that there is often a big difference between how service
providers think the service will be used, how users claim
they will use the service, and how users actually use the
service. This is where instrumentation comes in...

WHAT IS INSTRUMENTATION?

In this paper, instrumentation refers to capturing
information about service activity in real time, and over
time, in order to know who is doing what, from where,
how things are being done, and how long various actions
take.

Who?

This should always indicate the real end-user of the
service — somebody who can be contacted. In other
words, in an n-tier environment, it should not just be the
directly connected OS user on one of the tiers.

Data and information management

THCHAUST06

What?

In its simplest form, this could be the name of a method
/ function / procedure etc. A more comprehensive solution
would also capture details of all of the dimensions that
can affect the outcome of an action and/or the
performance of the service. These details are domain
specific, but an example from the LS when querying data
would be: the API method, the names of the signals
concerned, the time window, and any additional data
manipulation parameters (see Figure 4).

Where?

This should be a host name or IP address, and process
id, which can be used to physically locate calls being
made to the service.

How?

This means identifying which application (by name) is
using the service, and if the service is accessed via
libraries — which versions of the libraries are being used.

How Long?

Knowing the amount of time spent doing something is
an essential ingredient in understanding how a service is
performing, and why problems may have occurred.
Therefore it is necessary to capture the elapsed time for
each significant action executed within the service.

Besides these key elements, it is also important to
instrument if actions finish successfully or throw
exceptions in order to understand unexpected behaviour.

WHY INSTRUMENT?

Instrumentation is often considered an unnecessary
overhead, especially by developers who want their code
to run as fast as possible. However, this is a rather
shortsighted view on things.

Knowing the answers to the questions above enables
service providers to understand how a service is really
being used (or misused), and how it is performing in
terms of both throughput and response times. In turn, this
allows to pre-empt problems, identify potential
bottlenecks, plan system upgrades, and when issues
inevitably occur — diagnose and react swiftly and
effectively.

Collectively, these benefits far outweigh any perceived
run-time overhead of having instrumentation in place.

The rest of this paper will focus on particular examples
of instrumentation deployed in the LS, and how it has
helped meet the requirements for performance,
scalability, and stability.

DATA LOADING

Every day, the LS treats millions of data loading
requests, coming from hundreds of client processes. The
distribution of these requests across clients is heavily
skewed. For example, one client may be responsible for

1233

THCHAUSTO06 Proceedings of ICALEPCS2011, Grenoble, France

sending up to 40% of the data, and other just 1%. In
order to know how the systems are being used, it is
important to capture these data distributions.

Likewise, the data distribution within data loading
requests may be heavily skewed across clients, or over
time. In other words a fixed size data loading request may
contain a lot of data for a few signals, or a small amount
of data for many signals. This distribution can have a
significant impact on performance, and therefore also
needs to be captured to support performance analysis.

The other factor impacting performance of data loading
in the LS is whether or not a request contains duplicate
data (same timestamp received for the same signal),
which requires a special treatment taking 4 times longer
to process than a request without duplicate data.

Initial Implementation

The instrumentation in the LS has evolved significantly
over many years. Initially most of the above details were
just captured in log files. The problem with this approach
is that they were very difficult to analyze, especially as
the parallel load on the LS began to increase, and non-
related log entries become more and more interleaved.

To understand the data distribution across clients, an
internal database job ran queries against the logged data,
making aggregates of the amount of data received per
client. This approach was not scalable, and as the data
rates increased the aggregate queries were continually
adapted to use increasingly smaller sample periods of
data. A new approach to instrumentation was required.

Evolution

A well-structured instrumentation framework was
developed and put in place at the level of the data loading
API running on the Oracle application servers. This
framework captures all details of all data loading requests,
performs on-the-fly in-memory data aggregations, and
writes the results into the database on a daily basis.

This approach is extremely accurate (since aggregates
are based on actual data rather than data samples), and
avoids the need to use significant database resources to
estimate system usage. In addition the time spent on each
action (parse, check, prepare, load) within each data
loading request is captured and aggregated to facilitate
analysis of system performance, and identify bottlenecks
and bad clients.

The other major advantage with the instrumentation
framework is that all information is well structured and
exposed via JMX using Java managed beans (MBeans),
which can be consulted in real-time via any JMX (Java
Management Extensions) interface. This allows service
providers to easily see what the systems are currently
doing, and diagnose on-going problems.

INTERNAL DATA TRANSFER

The majority of the data logged in the MDB are
candidates to be transferred to the LDB for long-term
storage. What data actually gets transferred is governed

1234

by a comprehensive set of metadata defining things such
as deltas, smoothing, fixed logging, precision etc. for each
of the defined signals. The act of applying the metadata
to the raw data, and filtering and transferring the results to
the LDB are carried out using in-house developed
PL/SQL code which is executed in parallel by 8 internal
database jobs running every 5 minutes. The signals
whose data is treated by 1 of the 8 jobs are distributed
across the jobs according to a predefined category for
each of the signals.

Knowing how each execution of the data filtering and
transfer jobs performs, in terms of number of signals,
number of candidate values per data type, number of
logged values per data type, and times taken for each
internal action is essential.

Data Capture & Diagnostics

The PL/SQL data filtering and transfer code captures
all of the above information in memory, and writes the
results into dedicated database tables after each execution.

This detailed information remains available for 7 days
(lifetime of MDB data) and is extremely useful for
diagnosing performance problems — identifying if long
executions times are isolated to particular groups of data,
specific data types, certain times of the day or a specific
type of action (such as data collection and filtering in the
MDB, or data transfer to the LDB).

The detailed information is also aggregated on an
hourly basis (Figure 3), and results are stored long-term in
the LDB. This aggregate data helps identify trends in
system performance such as correlations with accelerator
performance, or gradual performance decreases as
demands on the system increase (e.g. requests to log data
for more signals and / or at higher frequencies.

Hourly Period

2011-09-1202:30.00 N ——
—— =
2011-09-1207:30:00 | —

A\

Average MDB to LDB Data Filtering
& Transfer Durations per Transfer Job

B DATA_LOADING 1
I DATA_LOADING_2
I DATA_LOADING_3
I DATA_LOADING_4
I DATA_LOADING S
I DATA_LOADING 6
I DATA_LOADING 7
I DATA_LOADING 8

—T
2011-08-11 17:30.00 I—
——

\\

2011-08-11 15:30.00

-
2011-08-11 13:30.00
T =
2011-08-11 11:30.00 —
=

E\@ :
.\

i

'
N
N

o

2010911 033000

2011-08-11 07:30.00

2011-00-11 05:30.00

2011-08-11 033000

|III:|
\|

W

201-08-1017:30.00

2010810153000

\

G

2010810 11:30.00

2010910083000

L

201-08-10 07:30.00

2011-06-1005:30.00

;;Ell
{

2010008183000

2011-09.0917:30.00

300 500 900 1200 Duration § 150

Figure 3: Example MDB to LDB instrumentation data.

Data and information management

Proceedings of ICALEPCS2011, Grenoble, France

DATA EXTRACTION

With up to 2 million requests per day to extract data for
one or more signals over greatly varying time periods —
data extraction from the LS represents a significant
portion of overall activity.

Data rates vary significantly from one signal to another,
and from one time period to another (e.g. according to
whether or not there is beam present in the LHC).

In such an environment, users are often unaware of the
amount of data that they are implicitly requesting, or of
the best methods to use to extract with.

Aiming for Service Stability

As part of an attempt to assure service stability, every
request to extract data is transparently instrumented,
exposed, and logged using a framework similar to that for
data loading, based on JMX. For each user: the running,
last added, last finished, and last unsuccessful requests are
always accessible via any JMX console. The Who, What,
Where, How, and How Long information is embedded in
each request, including signals involved, the extraction
time window, invoked method, elapsed time, library
versions, and the result (see Figure 4).

'ORACLE Enterprise Manager 10g

Cluster Topolody > Application Server
Application MBeans
Search | MBean Name *

cernch > OCAJ: ocdi leading data access 20110809 1 > Application: leqding-data-ex

Attributes (9)
Find
\tind) —

Operations (4)

B Description Value
= ApplicationName ApplicationName COLLIMATION_ANALYSIS
tor ¢ ut Can ut 0
Logger ount ount 3785401
L Last Com.
IMXLogger
LastCs LastC null
Requests s Las com
7 Applications unt unt 1
("] BETS_EXPLORER Ordered Ordered
U U
B BLM_ANALYSIS e —
() CNGSExtractor Attributes (9) Operations (4
(COLLIMATION_ANALYSIS Expand All I Collapse All
Users Na Value
ETTGTIWITRTS |V LastAddedRequest
applicationName COLLIMATION_ANALYSIS
() DAQ_CHAIN_VALIDATION o false
>{ DBPOP dataSource Measurement Database (PRO)
() ICARUS_CLIENT elapsedTime 9

(] ISOLDE_BEAM_ANLYSIS exceptionMessage
(™) LBDS_POC_OFFLINE

("] LHCB_LUMI_VS_LHC

(] LHC_HUMP_ANALYSIS_FXD,
("] LHC_PAGE1_FXD_HIST
>("] LHC_PERFORMANCE_SUMM,
B LHC_SCE

(™) LOGBOOK_CROSS_CHECK

extralnfo
B> fundamentalNames
hostName B L
methodName getNumericData
numberOfRecordsExtracted 601
productsVersion domain=4.6.1;extractor=4.6.1;client=4.6.1;
requestid 4661220
requestStariTime 2011-09-09 16:51:08
sessionld 4445422

B LOSS_ANALYSIS_FULL_LHC state Finished
H{"] ONLINE_CORRECTIONS timeScaleProperties
("] OPERA_CLIENT userlp
userName
(") PROFILE_MONITOR_COMMIS W variableNames
B QPS-SM Element BLMQLOBR?.B2120_MQ:LOSS_RS06

windowEndTimeUTC
windowStartTimeUTC

2011-09-09 16:36:17.000
2011-09-09 16:26:17.000

H(™] SPS_BQM_ANALYSIS
H(™] STATS_EXTRACTION

Figure 4: Data extraction instrumentation via JMX.

The ease of access of this information greatly facilitates
following up support requests, since service providers can
quickly access the full set of details of what the user is
trying to do. Furthermore, because this information is
accessible in real-time, a JMX agent connects every 5
seconds to the remote data extraction server, assesses the
current situation, and can take various actions:

e If a request has been running for too long, a warning
is first sent to service administrators, and if the
situation continues — the request will be terminated.
In such situations, it is common practice for the
service administrators to diagnose the problem and

Data and information management

THCHAUST06

pro-actively contact the user. More often than not —
the users just need to be advised about which
alternative methods to use or attribute values to
apply.

e If any centralized data extraction server fails, service
administrators are notified of the failure, together
with details of all requests running prior to the
failure, such that they can diagnose the cause, inform
the user responsible, and adapt the service to be more
resilient in the future.

Another way in which the captured data is used is
related to backwards compatibility during upgrades to the
API. Because all method calls are logged, it is possible to
deduce whether or not certain users will be affected by
necessary API changes, and contact them in order to
adapt their code, or delay the changes.

SUMMARY

Instrumentation should not be considered as an
overhead, but rather as an integral component of any
software infrastructure. Once in place it quickly becomes
part of the backbone of the system, allowing service
providers to quickly and confidently diagnose problems,
tune system performance, and plan upgrades.

The Logging Service instrumentation data is constantly
used to support users, and has helped unravel otherwise
impossible to diagnose problems in a complex and
distributed environment.

The Logging Service is a stable, high performance, and
heavily used service. The performance, proven ability to
scale, and overall stability are testament to the value of
the significant instrumentation in place.

REFERENCES

[1] C. Roderick and R. Billen, “Capturing, Storing and
Using Time-Series Data for the World’s Largest
Scientific Instrument”, November 2006, CERN-AB-
Note-2006-046 (CO).

[2] C. Roderick et al., “The LHC Logging Service:

Handling Terabytes of On-line Data”,
ICALEPCS’09, Kobe, Japan, October 2009,
WEP005.

1235

