
B ONLINE LOG ANALYSIS AND MAINTENANCE SYSTEM*

L. Brarda,J.C. Garnier† , N. Neufeld, F. Nikolaidis, CERN, Geneva, Switzerland

Abstract

History has shown, many times computer logs are the
only information an administrator may have for an incident,
which could be caused either by a malfunction or an attack.
Due to the huge amount of logs that are produced from
large-scale IT infrastructures, such as LHCb Online, criti-
cal information may be overlooked or simply be drowned
in a sea of other messages. This clearly demonstrates the
need for an automatic system for long-term maintenance
and real time analysis of the logs. We have constructed a
low cost, fault tolerant centralized logging system which is
able to do in-depth analysis and cross-correlation of every
log. This system is capable of handling O(10000) differ-
ent log sources and numerous formats, while trying to keep
the overhead as low as possible. It provides log gathering
and management, Offline analysis and online analysis. We
call Offline analysis the procedure of analyzing old logs
for critical information, while Online analysis refer to the
procedure of early alerting and reacting. The system is ex-
tensible and cooperates well with other applications such
as Intrusion Detection / Prevention Systems. This paper
presents the LHCb Online topology, problems we had to
overcome and our solutions. Special emphasis is given to
log analysis and how we use it for monitoring and how we
can have uninterrupted access to the logs. We provide per-
formance plots, code modification in well-known log tools
and our experience from trying various storage strategies.

INTRODUCTION

LHCb [1] is one of the four large experiments at CERN
which takes data from proton-proton collisions at the LHC.
The control of the experiment and the data acquisition from
the detector electronic channels to the permanent storage
is managed within the Online Cluster. It is separated from
the CERN IT infrastructure and managed entirely by LHCb
people. The cluster is made of about 2000 Linux machines,
200 Windows machines and 60 switches and routers. Win-
dows machines are the controllers of the detector systems.
The Event-Filer farm [2], and all the other Data Acquisition
(DAQ) servers are running under Linux. DAQ Software
is controlled and monitored via the Farm Monitoring and
Control System (FMC [3]). We use a uniform control in-
terface for the detector and for DAQ software: the SCADA
system PVSS [4].

∗This research project has been supported by a Marie Curie Ini-
tial Training Network Fellowship of the European Community’s Seventh
Framework Programme under contract number (PITN-GA-2008-211801-
ACEOLE).

† jean-christophe.garnier@cern.ch

The readout boards [5] are the interface between the de-
tector links and the network links. An embedded computer
allows the user to access and configure the entire board. It
is running the Scientific Linux at CERN distribution [6].

Most of our machines are equipped with Baseboard
Management Controllers (BMC) and accepts the Intelligent
Platform Management Interface (IPMI [7]).

All these systems - Operating Systems, PVSS, DAQ
software, IPMI, etc. - are generating numerous logs. They
are traditionally consolidated locally on the system produc-
ing them. There are some limitations:

• Investigating problems can lead to correlating numer-
ous log files from numerous locations.

• Once a machine is down, the local logs are unreach-
able and the problem investigation can only starts once
the machine is up again.

• In case of hard drive failure, logs are lost.

We therefore implemented a central logging system,
highly reliable and available, which collects logs from
every system, consolidates them hierarchically and dis-
tributes them so that they can be reachable from numerous
locations. Logs are then processed for indexation and anal-
ysis.

The first section presents the study and the deployment
of the central logging system. The second presents the pur-
pose of log analysis at LHCb, the tool we chose and its
configuration. The third presents the status and the perfor-
mance of the system, its limitations and its future.

CENTRAL LOGGING

Linux traditionally uses the syslog daemon [8] to manage
logging from the applications and from the system. Logs
are identified by a facility and a severity. The facility is
usually used to define the source of the message. There are
20 facilities; hence several sources have to share the same
facility in large systems. It is up to the system administra-
tor to configure this correctly. The severity is an eight-level
ladder used to classify the message importance. The dae-
mon task is then to write different files for any combina-
tion of facility and priority. Syslog can be run as a client
/ server application. A node will send its messages to a
remote node.

Syslog’s features are sufficient to design a central log-
ging system, but they were not flexible enough for us. Shar-
ing 20 facilities amongst one node is acceptable, but not
among 2200 nodes. Our system has to be able to differen-
tiate a large number of systems, it should be able to write

LHC

THCHAUST05 Proceedings of ICALEPCS2011, Grenoble, France

1228C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management



several files per nodes. A few thousand files are expected.
Figure 1 illustrates the file system architecture.

Clusterlogs

Farm PartitionsServices PVSS Hosts

Subfarms

Nodes

Detectors

Software Readout
Boards

Nodes

Projects

Nodes

Figure 1: Log File System structure. The directory is di-
vided first by themes. Then there are sub-categories corre-
sponding to subsystems, then nodes, and then projects or
software.

Rsyslog [9] is an enhanced syslog daemon. A few no-
ticeable features are:

• A more complex analysis of the log message, using
tags, regular expressions, sources, etc.

• The possibility to convert files to the syslog protocol,
hence to get the logs from applications which are not
using syslog.

• Multiple queues and multiple threads.

• Aggregate log lines into batches before to write them,
to maximize IO performance.

• Message discard according to watermarks and log
severity.

From these features, one can notice that rsyslog is ori-
ented for setting up a centralized logging system. Rsyslog
uses the syslog protocol so it is compatible with the syslog
daemon. We deployed rsyslog on most of our cluster as
client instances, except on embedded computers where it is
preferable to run only syslog, which is much lighter.

The logging system is implemented with a few Linux
servers and thousands of clients. It is described in figure 2.
The log servers are configured as a cluster. The cluster
nodes are identical commodity servers. Processing is not
a critical issue here so they have only a single processor
chip of four cores. They are equipped with 8 GB of mem-
ory. They have two SATA II hard drive disks of 2 terabytes
configured as mirrors in RAID 1. Each node has two net-
work interfaces. The first is used for control, for receiving
the log messages and for exporting the log file system to
log clients for analysis. The second is used for meta-data
transfer and for cluster synchronization.

Corosync [10] manages the communication between the
nodes of the cluster. On top of it, pacemaker [11] manages
the applications that are critical for the cluster, like the vari-
ous logging mechanism, virtual IP addresses, etc. It makes

sure that the nodes and the services that they provide are
running correctly, and distributes them amongst the cluster.
Logs are written in a common area for all the cluster nodes,
using gluster [12]. This is a file system that we use to repli-
cate the information between all the nodes of the cluster, in
order to increase the reliability of our system. Hence, if we
have four machines with 2 terabytes hard disk space, our
cluster area will only have a maximum of 2 terabytes space.
Rsyslog is running as a server on every cluster nodes. This
particular daemon is not managed with pacemaker as it has
to run on every instance. It is simply managed via chkcon-
fig. This is the main logging software, but there are a few
more custom software. They are managed by pacemaker,
and they process custom logging protocols developed for
LHCb. The cluster is configured an Active/Active way. All
nodes are processing logs coming from clients in parallel.
In order to do that, we use a virtual IP address that every
node recognizes as theirs. This IP address is bounded to a
multicast Ethernet address that the switch uses to send data
to all servers. Each server receives every log messages,
but they will only process a subset of them, according to a
hashing algorithm managed by netfilter [13, 14].

The log servers all share the same configuration for rsys-
log. The current configuration is awfully complex, but it is
interesting to stress that it currently does not rely on multi-
queuing and multi-threading as we observed that perfor-
mance were decreasing so much that no logs were written
in the end. We suspect a deadlock or live-lock issue and
further investigations are required before to report about
that to the developers. The daemon is configured to write
batches of several lines, in order to improve IO perfor-
mance, trying to do not delay the log information too much
for the user.

Cluster Service Network
Active/Active

Multicast Ethernet
NFS export

Syslog protocol
and custom
protocols

Cluster Background Network
Corosync and Meta Data

2200 sources:
- System
- PVSS
- Software
- IPMI

Log Servers

NFS

Log Analysis

Figure 2: Architecture of the logging system. 2200 clients
are logging information using the syslog protocol into an
Active/Active cluster. This cluster exports the log files via
NFS for log analysis. Log analysis is then performed by
user applications and a host based intrusion detection sys-
tem.

Clients are running both Windows and Linux. Under
Linux, rsyslog sends the system logs, most application

Proceedings of ICALEPCS2011, Grenoble, France THCHAUST05

Data and information management 1229 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



logs, PVSS and IPMI logs to the log cluster. Our farm and
our data acquisition servers are however running applica-
tions which are not logging to syslog but to FIFOs which
are then read by FMC loggers. These loggers can then di-
rectly write a file or forward logs to a remote FMC logger.
The log cluster runs FMC loggers, but some of their pro-
prieties prevent them to run Active/Active like rsyslog, so
pacemaker makes sure that only one server runs one in-
stance of rsyslog for a same system. The event logging
system of Windows is slightly different and does not rely
on syslog. The system relies there on Snare [15] and Epi-
log [16] to respectively send event log messages and PVSS
logs to the cluster using the syslog protocol.

The log cluster exports the log file system via NFS to
some servers, so that users can access all logs easily. A
special server is performing log analysis.

LOG ANALYSIS

Log analysis consists in reading the log files to look for
patterns or sequences of lines. Most of the lines will not be
interesting and nothing will be produced, in some cases a
message is written in a dedicated log file which is a sum-
mary of what was important. Really important log mes-
sages will trigger alarms, sent by e-mail or text message,
and they could also trigger automatic responses to fix the
problem.

Several tools exist and are open source, but our choice
is the Open Source Host-based Intrusion Detection System
OSSEC [17]. Performing log analysis using a Host-based
Intrusion Detection System (HIDS) comes along with a
wider strategy of security in LHCb. It will be peered with
an IDS performing network analysis.

OSSEC brings numerous features as it is a client server
HIDS, but our primary use here will be to configure it as
a log analyzer. It consists in defining decoders, which are
templates that a log line can match or not. If a line matches
a decoder, then OSSEC can apply rules to this line, in order
to study it, to define its degree of importance, and to decide
if the administrator should be warned, immediately or later,
and whether to run or not an automatic action to fix the
problem.

The OSSEC configuration is complex for our cluster, and
there is still a lot of tuning to be done. In order to keep
tracks of old configurations, the OSSEC rules and decoders
are written into a GIT [18] repository.

RESULTS

We successfully implemented a central logging service
with log analysis. It collects most of the identified logs
of the LHCb Online system and writes them in more than
12000 files. Figure 3 shows the performance of a node over
one month. The network is not overloaded but some peaks
can make performance quite weak. The scalability, the re-
liability and the high availability requirements are fulfilled.
There are however a lot of improvements to implement.

The typical issue of such system is the “split brain” issue.
It happens when one or more members of the cluster can-
not communicate with the other members for a while, and
are starting to work independently from each other. Pace-
maker can make sure that such situation does not happen,
whereas it occurred with gluster a few times. It is not a crit-
ical issue at all there, as once the cluster is unified, gluster
will recover files which were written by both sub-clusters.
Figure 4 shows the IO performance of the hard drive of a
node when such recovery occurs. The nodes are basically
unable to write any log messages for a while as their hard
drive disks are monopolized by gluster to check the 12000
files of our system and to merge data from the sub-clusters.
At first the log servers were designed with 4 GB of memory
and the recovery was a critical moment as all log messages
are cached in memory. Doubling the memory made this sit-
uation more comfortable. If the gluster area size increases
much more, this recovery might take much more time and
the caching might not be enough to overcome it. In that
case, upgrading the hard drive disks to formats which can
support a larger number of IOs would improve the situa-
tion.

Another issue comes from the Active/Active configura-
tion of the cluster. Netfilter is a standard module of the
kernel. Its project which manages the virtual IP address
and the multicast Ethernet address is however written with
a hard-coded debug logging. It prints a line for each packet
received. The log files for the log servers are basically pol-
luted with these messages. There are two solutions. The
first is to use another netfilter module, more recent and
not integrated into pacemaker yet. The second, that we
adopted, is to patch the kernel module to remove the dis-
turbing lines.

Figure 3: Log server throughput for one month. The input
rate are log lines coming to rsyslog or custom loggers. The
output rate is the NFS rate.

The system would ideally be real time, users could read
logs remotely as soon as they were written locally by the
nodes, and the log analysis would be performed at this mo-
ment as well. It is not possible yet for several reasons. In
order to maximize IO performance, rsyslog is configured
to write batches which produces a slight delay. Thereafter,
our current system is unable to export the gluster file sys-

THCHAUST05 Proceedings of ICALEPCS2011, Grenoble, France

1230C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management



Figure 4: Disk IOs on the RAID file system. The read
peaks around Wednesday 12:00 were gluster split brain re-
covery situations. During these periods, all IOs operations
are allocated for gluster and rsyslog cannot write most of
the logs. It still performs caching.

tem via NFS, so it exports the real file system. Hence, the
log analyzer and the users have to wait for the gluster cache
to be flushed to disk. An alternative could be to user a glus-
ter client instead of NFS.

LHCb, and more particularly Fotis Nikolaidis, con-
tributed to the rsyslog module imfile which manages the
translation of files to syslog. With this module, rsyslog
polls files periodically, and logs the difference between the
previous poll and the current poll. The new version of the
module provide the option to use inotify [19] under Linux
instead of polling. This tool allows applications to regis-
ter in order to be informed when changes happens to files.
Hence, changes in the log files are directly reported to rsys-
log.

REFERENCES

[1] The LHCb Collaboration, Augusto Alves Jr and others,
“The LHCb Detector at the LHC”, JINST, 3:S08005, 2008.

[2] http://lhcb-trig.web.cern.ch/lhcb-trig/HLT

[3] https://lhcbweb.bo.infn.it/twiki/bin/view.cgi/LHCbBologna/
FmcLinux#Introduction

[4] http://lhcb-online.web.cern.ch/lhcb-
online/ecs/PVSSIntro.htm

[5] http://lphe.epfl.ch/tell1/

[6] http://linux.web.cern.ch/linux/

[7] http://www.intel.com/design/servers/ipmi/

[8] http://datatracker.ietf.org/wg/syslog/charter/

[9] http://www.rsyslog.com/

[10] http://www.corosync.org

[11] http://www.linux-ha.org/wiki/Pacemaker

[12] http://www.gluster.org/

[15] http://www.intersectalliance.com/projects/SnareWindows/
index.html

[16] http://www.intersectalliance.com/projects/EpilogWindows/
index.html

[13] http://www.netfilter.org/

[14] http://security.maruhn.com/iptables-tutorial/x8906.html

[17] http://www.ossec.net/

[18] http://git-scm.com/

[19] http://lwn.net/Articles/104343/

Proceedings of ICALEPCS2011, Grenoble, France THCHAUST05

Data and information management 1231 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


