
THE SOFTWARE IMPROVEMENT PROCESS – TOOLS AND RULES TO
ENCOURAGE QUALITY

K. Sigerud, V. Baggiolini, CERN, Geneva, Switzerland
Abstract
The Applications section of the CERN accelerator
controls group has decided to apply a systematic approach
to quality assurance (QA), the “Software Improvement
Process”, SIP. This process focuses on three areas: the
development process itself, suitable QA tools, and how to
practically encourage developers to do QA. For each
stage of the development process we have agreed on the
recommended activities and deliverables, and identified
tools to automate and support the task. For example we do
more code reviews. As peer reviews are resource-
intensive, we only do them for complex parts of a
product. As a complement, we are using static code
checking tools, like FindBugs and Checkstyle. We also
encourage unit testing and have agreed on a minimum
level of test coverage recommended for all products,
measured using Clover. Each of these tools is well
integrated with our IDE (Eclipse) and give instant
feedback to the developer about the quality of their code.
The major challenges of SIP have been to 1) agree on
common standards and configurations, for example
common code formatting and Javadoc documentation
guidelines, and 2) how to encourage the developers to do
QA. To address the second point, we have successfully
implemented ‘SIP days’, i.e. one day dedicated to QA
work to which the whole group of developers participates,
and ‘Top/Flop’ lists, clearly indicating the best and worst
products with regards to SIP guidelines and standards, for
example test coverage. This paper presents the SIP
initiative in more detail, summarizing our experience
since two years and our future plans.

BACKGROUND
When LHC moved from the intense preparation and

commissioning phases to operations, a consequence was
increased requirements on the integrity and availability
from the operations crew on the released software for
controls provided for by us, the Applications (AP) section
of the Controls group of the Beams department. We were
at the same time facing a large and ever-growing code
base, demanding more and more of our time to maintain
and debug with less time to focus on new functionality.
Even though some quality assurance (QA) techniques,
like unit testing, were being applied in several projects, no
general guidelines or standards existed. Therefore, in
view of improving the quality and integrity of the
products released in operations, we decided to apply a
systematic approach aiming to introduce quality
improvement as an integral part of the development cycle
and to standardize and unify between the projects with
regards to deliverables and deployment and release
procedures. We call this initiative SIP, the Software
Improvement Process.

OBJECTIVES
The objectives set for this initiative are:

To think of and organize us as one big team, not many
small ones. This means that everybody and nobody own
the software produced by the section. It should therefore
adhere to the standards and guidelines agreed by all of us,
not follow the personal preferences of one developer. This
is important in an environment where many developers
collaborate on the same software and where the turnover
resulting from short-term contracts are fairly high.

To achieve better quality of products that is measurable
based on predefined metrics and with an agreed set of
deliverables. Metrics are important as they give us the
means to measure progress, which helps encouraging the
developers to apply the standards and guidelines.

To reduce code base growth by promoting the
development and use of common frameworks, libraries
and components, avoiding duplication.

To provide better and more comprehensive
documentation of the process and components.

To achieve a better software production process
through incremental improvements. We don’t claim to
have all the answers as we start therefore we will adapt as
we go and as we learn what works and what does not
work, following the evolution of the industry
recommendations and tools available to us.

The process focuses on three areas: The development
process itself, the QA tools available to automate the
process as much as possible, and how to encourage
developers to include QA in their everyday work.

DEVELOPMENT PROCESS AND TOOLS
In the AP section we apply a systematic approach, a

development process, to ensure a timely delivery of
software corresponding to the clients needs and requests
while ensuring improved productivity and software
quality. It is an iterative process, where for each iteration
the project goes through the stages ‘Design’, ‘Implement,
Test and Document’, and ‘Deploy and Maintain’ as
depicted in Figure 1.

THBHMUST04 Proceedings of ICALEPCS2011, Grenoble, France

1212C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

Figure 1: The stages of the development process.

For each of the stages depicted in Figure 1 we have in
SIP defined the recommended or mandatory activities and
deliverables. We have also identified tools that will help
us automate the process as much as possible and agreed
on their configuration. To ensure that each developer has
these tools available and uses the same configuration,
they have been integrated into an AP-specific distribution
of our recommended IDE, Eclipse [1].

Design
In the design stage we have agreed to do more design

reviews for new and existing projects. The purpose is
twofold: firstly, it verifies the soundness of the design and
propose improvements at an early stage of the iteration,
i.e. before the developers invest much time in the actual
coding and testing; secondly, it promotes knowledge
sharing and collaboration between different development
teams in the AP section, and help identify overlapping
functionality, in view of reducing redundancy from our
existing code base.

These reviews are at the detail level of sub-
components. To discuss the design, we use UML class
diagrams with the main classes and design patterns, and
sequence diagrams with the interactions between these
classes.

Implement, Test, and Document
In this stage the SIP focuses on three areas: the code,

the documentation and the testing.
Code reviews go into more detail than design reviews.

They aim at finding bugs, at making sure the code is
maintainable and at verifying that our development
conventions are met. However, as code reviews are very
time consuming, we have decided to focus only on the
most critical parts of our code (e.g. core libraries or multi-
threaded code) and on code written by junior developers
that need mentoring. This is done in an interactive way
with person-to-person reviews of the code, but also in a
lightweight, offline manner relying on the Atlassian tools
FishEye+Crucible [2] integrated with Eclipse. Through
this tool a committer can set up a review for a change-set,
invite a number of fellow developers, which are then
notified via email and can review the code changes in
Eclipse and comment inline.

Figure 2: Code review using FishEye+Crucible.

In addition to code reviews by humans, we rely on
static code analysis tools to automatically spot the most
common mistakes and bug patterns. In the beginning of
the SIP we performed an investigation and comparison of
several tools and agreed on using FindBugs [3] and
Checkstyle [4]. Plugins for these tools are distributed with
our tailored Eclipse distribution, and we have agreed on a
common configuration for each, also distributed with the
Eclipse distribution. In addition to these external tools, we
have settled on a common configuration of the Eclipse
warnings, also pre-configured in our Eclipse distribution.

The benefit of having the tools integrated with the IDE
is that they show up as other compilation errors, giving
immediate feedback to the developer about potential
problems.

Figure 3: FindBugs report in Eclipse.

Another area the SIP focuses on is the level of testing
in the projects. Even though most developers agree on the
benefits of unit testing, not all take the time to implement
unit tests as new functionality is added. To improve on
this situation we have agreed to make unit tests a
mandatory deliverable of a project: a minimum coverage
of 30% for non-trivial classes must be achieved before a
project can be released. We use Clover [5] from Atlassian
to check the level of unit test coverage and again there is
a plugin integrated with our distribution of Eclipse, giving
immediate feedback to the developers of the level of
coverage and the high-risk classes. Tested code appears in
green, while untested code is highlighted in red (c.f.
Figure 4).

Design

Implement, Test, DocumentDeploy, Maintain

Proceedings of ICALEPCS2011, Grenoble, France THBHMUST04

Quality assurance 1213 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Figure 4: Test coverage indicated using Clover.

To make sure that changes in one project do not break
other projects that depend on it, we have put in place a
Continuous Integration (CI) server using the Atlassian
tool Bamboo [6]. Whenever a developer commits changes
to the source code repository, this tool checks out the new
sources, compiles them and runs the unit tests. It then
does the same with all dependent projects, in a cascading
way, to assure that everything still compiles and all the
unit tests still succeed.

Figure 5: Bamboo build plan summary.

Documentation in SIP concerns two areas: to document
the process itself and as a project artifact mandatory
before a release.

To document the process, we have put in place a wiki
page, detailing the set of project artifacts, best practices
and standards that we have agreed on. It also lists the
tools we have decided to use and their configuration.

Regarding documentation as a mandatory artifact of a
project, we believe that for the documentation to be kept
up to date, it should be as close to the code as possible.
We therefore rely in first place on documenting the code,
using the Javadoc [7] tool. At least for the base java
source package(s), there should be a clear description in a
file called package-info.java, summarizing the
functionality of the package and sub-packages. As needed
and for more details regarding specific sub-packages,
there can be one package-info.java per sub-package.

Regarding documentation inside the code, we have
agreed on common file and class headers, containing
items like the copyright statement and SVN variables.

At least all public classes and interfaces must be
documented with Javadoc following the agreed
guidelines, and there should be Javadoc links to other
packages (e.g. JDK).

We have also agreed on a common code formatting,
available by default in our Eclipse distribution.

Both the Javadoc and the code formatting are checked
using Checkstyle.

For all documentation that cannot be done using
Javadoc, we are relying on Atlassian’s wiki Confluence
[8] to document the process and project-specific
information.

In the deployment and maintenance phase, we have

focussed on introducing a common build, release and
deploy procedure using tools developed in-house. We
have made a particular effort to standardize the
deployment of Java server-side processes. For this we
have agreed on a common naming, location and directory
structure, supported by tools that enable us to easily
deploy a new version of our products into operations, but
also to roll-back to the previous version if necessary. The
benefit is that the processes are now easily recognized and
located by most members of the AP section, and allows
them to intervene on processes of their colleagues, e.g. to
restart or roll-back a process if necessary.

Once a process has been deployed operationally, the
follow up of issues and new requests is important. We
have chosen to rely on Atlassian’s issue tracking tool
JIRA [9] for this as it gives us the transparency we are
looking for and is easily configurable to our needs. Being
an Atlassian tool it also integrates well with the other
tools in our development process, like the CI server
Bamboo and FishEye+Crucible for code reviews where
an issue number is the traceable item across all three, as
shown in Figure 6.

Figure 6: JIRA project summary page with links to
Bamboo builds and to sources and reviews through
FishEye+Crucible.

Deploy and Maintain

THBHMUST04 Proceedings of ICALEPCS2011, Grenoble, France

1214C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

CHALLENGES
The two major challenges of SIP have been (1) to agree

on the common standards and configurations, such as the
common code formatting and Javadoc documentation
guidelines described previously and (2) to encourage the
developers to do QA.

For the first point, the approach we have taken is
summarized in the first objective described above: Think
of and organize us as one big team, not many small ones.
As the code belongs to the section, not to a project or an
individual developer, it should adhere to the guidelines
and standards agreed by everybody not the preferences
and habits of a single person.

For the second point, most members of the AP section
saw the benefits of the QA techniques discussed here, and
many projects already applied some of them consistently.
However, they felt that their priority was to sort out issues
and to provide new functionality requested by the users,
and hence, they felt they did not have time for more QA
work. To address this issue, we have decided to
‘officialise’ the time spent on QA and make the artifacts it
produces mandatory deliverables of a project before
release. QA objectives are part of a project’s yearly
objectives and prioritized and reported on regularly as
with more traditional objectives. The progress for each
project to adhere to the agreed guidelines is also tracked
and ‘Top/Flop’ lists are presented on our wiki showing
the best and worst projects. Finally, we have introduced
“SIP days”, approximately one every 3 months when
everybody in the section works on a common goal, e.g. to
increase the test coverage, to complete documentation or
to standardize deployment configurations. This is to
encourage the developers who might still have difficulties
to find the time for QA activities to apply the guidelines,
standards and tools in their work.

FUTURE PLANS
As for our development, we are also for the SIP

applying an iterative process and continuously
considering how to improve and move forward with QA
related work.

Inside the section, there is still some work to finalize
the list of guidelines but the main focus will be on

improving the tool integration and the tracking of the
progress through Top/Flop lists. As well as developing
our own tool, we are also considering tools like Sonar
[10], a platform to manage code quality that integrates
many of the tools mentioned above, displaying the results
in a clear manner.

Figure 7: The Sonar dashboard.

At the group level, there is also an increased interest in
QA, most particular in extending the SIP principles to
C/C++ projects.

REFERENCES
[1] Eclipse: http://www.eclipse.org/.
[2] FishEye+Crucible:

http://www.atlassian.com/software/fisheye,
http://www.atlassian.com/software/crucible

[3] FindBugs: http://findbugs.sourceforge.net/
[4] Checkstyle: http://checkstyle.sourceforge.net/
[5] Clover: http://www.atlassian.com/software/clover/
[6] Bamboo: http://www.atlassian.com/software/bamboo
[7] Javadoc:

http://www.oracle.com/technetwork/java/javase/docu
mentation/index-jsp-135444.html

[8] Confluence:
http://www.atlassian.com/software/confluence/

[9] JIRA: http://www.atlassian.com/software/jira/
[10] Sonar: http://www.sonarsource.org/

Proceedings of ICALEPCS2011, Grenoble, France THBHMUST04

Quality assurance 1215 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

