
TAILORING THE HARDWARE TO YOUR CONTROL SYSTEM*

E. Björklund, S.A. Baily, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

Abstract
In the very early days of computerized accelerator

control systems the entire control system, from the
operator interface to the front-end data acquisition
hardware, was custom designed and built for that one
machine. This was expensive, but the resulting product
was a control system seamlessly integrated (mostly) with
the machine it was to control. Later, the advent of
standardized bus systems such as CAMAC, VME, and
CANBUS, made it practical and attractive to purchase
commercially available data acquisition and control
hardware. This greatly simplified the design but required
that the control system be tailored to accommodate the
features and eccentricities of the available hardware.
Today we have standardized control systems (Tango,
EPICS, DOOCS) using commercial hardware on
standardized busses. With the advent of FPGA technology
and programmable automation controllers (PACs &
PLCs) it now becomes possible to tailor commercial
hardware to the needs of a standardized control system
and the target machine.

In this paper, we will discuss our experiences with
tailoring a commercial industrial I/O system to meet the
needs of the EPICS control system and the LANSCE
accelerator. We took the National Instruments Compact
RIO platform, embedded an EPICS IOC in its processor,
and used its FPGA backplane to create a “standardized”
industrial I/O system (analog in/out, binary in/out,
counters, and stepper motors) that meets the specific
needs of the LANSCE accelerator.

BACKGROUND
The 800 MeV proton accelerator at the Los Alamos

Neutron Science Center (LANSCE) was designed and
built in the 1960’s. The original design included a
custom-built computer control system based on a custom-
built data acquisition system that we called RICE
(“Remote Information and Control Equipment”) [1]. In
the 1980’s, with the advent of the CAMAC standard, we
adapted our control system to use both CAMAC and
RICE. Then, in the 1990’s, we introduced both VME and
EPICS into our control system. This required a lot of
adaptation – old control systems to new hardware, new
control systems to old hardware, and new and old control
systems to each other.

While it is nice to keep up with new technology,
unfortunately it did not mean that we got to eliminate any
of the old technology. And so, in the 2000’s we found
ourselves supporting a control system that included three
generations of hardware technology (RICE, CAMAC, and
VME) and two generations of software technology
(EPICS and the legacy control system).

Now, at last, we have the opportunity to start phasing
out our old hardware and software. The only way to make
this economically feasible, however, was to use hardware
that could a) interface with the accelerator the way the
accelerator equipment was designed, and b) provide a
straightforward interface to the new software (EPICS).
And so we began exploring the use of programmable
hardware solutions.

THE NEW LANSCE INDUSTRIAL I/O
SYSTEM

For our first test case we decided to replace the
Industrial I/O (IIO) portion of one RICE module with a
commercial programmable logic controller (PLC). We
defined “Industrial I/O” to encompass the basic, non-
time-critical, non-closed-loop, and non-safety-critical
functions of the control system. The PLC system worked
well, but we discovered that it was not fast enough for
some of our IIO binary output channels. It also could not
time ADC reads to avoid the noise induced on the system
by the accelerating RF.

For our next iteration, we traded the PLC for a National
Instruments Compact RIO system, which is about as
environmentally rugged as a PLC, but can also be several
orders of magnitude faster. In the Compact RIO system,
I/O cards plug directly into an FPGA. The FPGA can be
programmed using LabVIEW, which gets translated into
VHDL and then into the FPGA bitmap.

The standard RICE-replacement system we constructed
is an 8-slot Compact RIO system that features 64 binary
input channels, 32 sinking binary output channels, 8 solid
state relay binary output channels, 32 analog input
channels, 16 analog output (DAC) channels, and 4 stepper
motor channels. The analog inputs can be triggered in
order to avoid RF noise. Variants of the standard system
are possible, and may replace some functionality (e.g.
stepper motors) with other functionality (e.g. counters).
In most cases, one (IIO) chassis can service all the
industrial I/O channels in one RICE module. Details of
the specific implementation can be found in the
companion paper [2].

ADAPTING THE COMPACT RIO TO RICE
The specific features of the RICE system that we

wanted to emulate in our new IIO controller were:
 Timing the ADC reads to avoid RF-induced noise
 Multiple protocols for binary output commands.
 Knob-friendly stepper motors.
 Easy on-line reconfiguration

*Work supported by the US Department of Energy under contract
DE-AC52-06NA25396

Proceedings of ICALEPCS2011, Grenoble, France THAAUST01

Integrating industrial/commercial devices 1171 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Binary Output Protocols
The LANSCE control system uses four different

command protocols for binary output channels. These
are:

 Command Only: The simplest protocol. Turn it on
and it goes on. Turn it off and it goes off.

 Command With Latchback: The most complex
protocol and the most common protocol used by
RICE. Each command channel has an associated
readback channel. The command value tracks to the
value of the readback channel until a command is
issued. The command value is held for a specified
“hold time”, allowing time for the readback to reflect
the new command value before the command
channel starts tracking it again. Latchback channels
are useful when a device can be commanded from
multiple sources.

 Momentary Normally Open: The command
channel is normally low. Writing a 0 to the channel
has no effect. Writing a 1 to the channel causes the
device to change state. When a 1 is written, the
command channel will be held high for the specified
hold time, after which it reverts to low. A
“momentary normally open” channel with a
latchback is useful for implementing fault/reset
logic.

 Momentary Normally Closed: The same protocol
as “momentary normally open” except that the
command output is inverted.

CAMAC and VME systems require a different card type
for each of four binary output protocols. Even more card
types are required if the hold times are implemented in
hardware. By programming the protocol into the
controller, we were able to implement all the binary
command channels with only two card types.

Control Knobs and Stepper Motors
One of the unique features of our original control

system is its heavy reliance on stepper motors as the
primary analog output device and assignable control
knobs as the primary analog output interface. This was a
problem when we started to integrate EPICS into the
control system because EPICS is not very good at
implementing control knobs and particularly bad at
controlling stepper motors with control knobs.
Consequently, we spent a lot of time adapting our EPICS
system to work well with control knobs [3].

A problem that can occur when knobbing a stepper
motor is that the pulses can accumulate faster than the
motor can turn, resulting in overshooting the intended
target. We avoid this problem by limiting the output of
the control knobs to only the number of pulses that can be
accumulated in a fifth of a second. We also programmed
the stepper motor controller to preempt the current pulse
stream whenever a new pulse stream is received. In this
way we guarantee that the device will stop moving when
the knob stops turning.

Instead of using a stepper motor card, we chose to
implement our stepper motor controller with a simple
binary output card. This allowed us to program in the
exact pulse width, speed and ramping characteristics that
the accelerator equipment expected from RICE.

Stem Cells and Reconfiguration
In the RICE system, when you needed to change the

protocol of a binary output channel, or give it a different
readback, you simply moved a jumper or re-routed a wire.
Typically this could be accomplished in a matter of
minutes and did not disturb any of the other equipment
controlled by that RICE module. To accomplish this same
task with an FPGA, first the FGPA source code must be
changed. Then (in the case of Compact RIO) the source
code must be translated into VHDL. Then the bitmap
needs to be reconstructed from the VHDL (a potentially
lengthy process). Finally, the Compact RIO system must
be taken off-line while the bitmap is re-flashed and the
Compact RIO rebooted.

Reconfiguration occurs more frequently than one who
is not accustomed to the workings of an accelerator
laboratory might think. In order to minimize the amount
of time it takes to reconfigure our FPGA systems, we
adopted a “Stem Cell” approach. Under this approach,
the FPGA code for a binary output channel (for example)
resembles a biological stem cell. A binary output “stem
cell” has the possibility of becoming any command type
(command only, latch-back, momentary open, or
momentary closed), using any binary input for its
readback, and having any hold time between 0 and 65
seconds (in millisecond intervals). The “stem cell” does
not take on a specific function until it receives instructions
from a configuration process. The configuration process
reads a configuration file and assigns the specified
functions to the stem cells. Configuration runs at startup,
but can be invoked again at anytime. Thus it is possible
to completely reconfigure the action and behavior of a
binary output channel “in vivo” without any interruption
of service.

The chief drawback of the “stem cell” approach is that
it requires more FPGA real estate per channel. When we
first tried this approach on a Virtex 2 FPGA, we only had
enough space to implement 11 binary output channels.
After upgrading to a Virtex 5, however, we had more than
enough room for 40 binary output channels and 64 binary
input channels.

Binary outputs are not the only stem cells in our
system. We can also dynamically configure the dynamic
range and trigger of our analog input channels, the pulse
rate and (to some extent) the ramp up rate of our stepper
motor channels, and the integration time of our counter
channels.

EMBEDDING THE CONTROL SYSTEM
IN THE HARDWARE

Perhaps one of the most dramatic ways to tailor the
hardware to your control system is to actually embed it

THAAUST01 Proceedings of ICALEPCS2011, Grenoble, France

1172C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Integrating industrial/commercial devices

within the hardware. Many commercial products such as
PLCs, PACs, Serial Controllers, and beam diagnostics
employ an embedded processor running a real-time or
“near” real-time operating system. This raises the
possibility of actually embedding the control system (or at
least the “front end” part of the control system) in the
device’s processor and letting it interact directly with the
vendor’s code. One of the strengths of belonging to a
control system collaboration is that vendors have been
willing to entertain and even market this ability. We have
already seen this with products from Instrumentation
Technologies [4], Moxa [5], National Instruments [6],
Yokogawa [7], and ZTEC Instruments [8].

The Compact RIO uses a power-PC running the
vxWorks real-time operating system. National
Instruments and CosyLab collaborated with us to install a
complete EPICS I/O Controller (IOC) on the Compact
RIO. The EPICS software runs concurrently with the
National Instruments software and communicates with it
using a shared memory interface concept originally
pioneered at the Spallation Neutron Source [9].

One immediate advantage of embedding the control
system is that data displayed on the operator screens now
comes directly from the Compact RIO. With the PLC, the
data had to go from the PLC to an EPICS IOC and then to
the operator screen. Another advantage is that the
Compact RIO is now able to take advantage of all the
EPICS utilities such as archiving, bumpless reboot, access
security, alarm handling, performance diagnostics, and
our local software for making control knobs work well
with EPICS. A final advantage is that the Compact RIO
system may also access other local devices that have
Ethernet interfaces – such as, for example, a PLC.

One final topic worth mentioning is that FPGAs are
now coming equipped with hard and soft-core processors,
making it possible to embed the control system right on
the FPGA. Some examples can be found in [10], [11],
and [12].

CONCLUSION
Not only has the Compact RIO IIO controller worked

well as a replacement for RICE, but with some minor
tweaks we found it also works well as a replacement for
CAMAC. To date we have replaced two RICE modules
and two CAMAC crates with our standard Compact RIO
IIO systems. The three things that have contributed to
this success have been 1) the ability to program the
controllers, which allowed us to interface with existing
accelerator equipment, 2) embedding the control system
in the controller, which simplified the software interface,
and 3) the ability to reconfigure the interface on-line.

ACKNOWLEDGEMENTS
The authors would like to thank David Bonal, Thierry

Debelle and Ryan King of National Instruments for their
invaluable support and assistance with the initial
implementation of the Compact RIO IIO Controller. We
would also like to thank Rok Šabjan of Cosylab for his

initial work on getting EPICS to run on the Compact RIO
as well as for the initial implementation of the shared
memory library.

REFERENCES
[1] D.R. Machen, R. Gore and D. Weber, “A Compact

Data Acquisition And Control Terminal For Particle
Accelerators”, PAC’69, IEEE Trans. Nucl. Sci. NS-
16, p.883 (1969) ; http://www.JACoW.org

[2] S.A. Baily and E.Björklund, “Tailoring the
Hardware to Your Control System”, 5th NI Big
Physics Symposium, Austin, August 2011,
publication pending;
https://decibel.ni.com/content/groups/big-
physics?view=documents

[3] E. Björklund, “Toward A General Theory of Control
Knobs,” ICALEPCS’01, San Jose, November 2001,
THAP071, p.608 (2001); http://www.JACoW.org

[4] C.Scafuri, V. Forchì, G. Gaio and N Leclercq,
“Embedding a TANGO Device Into a Digital BPM”,
PCaPAC’06, Newport News, October 2006, p. 23;
http://www.jlab.org/conferences/PCaPAC/PCaPAC2
006_proceedings.pdf

[5] G.Y. Jiang and L.R. Shen, “An Embedded EPICS
Controller Based on Ethernet/Serial Box,”
ICALEPCS’07, Knoxville, October 2007, WPPA06,
p.328 (2007); http://www.JACoW.org

[6] E. Björklund, A. Veeramani and T. Debelle, “Using
EPICS Enabled Industrial Hardware for Upgrading
Control Systems,” ICALEPCS’09, Kobe, October
2009, WEP078, p.555(2009);
http://www.JACoW.org

[7] A. Uchiyama et. al., “Development of Embedded
EPICS on F3RP61-2L,” PCaPAC’08, Ljubljana,
October 2008, WEX03, p.145 (2008);
http://www.JACoW.org

[8] B.L. Shaw and C.D. Ziomek, “Off-The-Shelf EPICS
Instrumentation for Remote Waveform Monitoring
& Analysis,” IPAC’10, Kyoto, May 2010,
MOPE082, p.1173 (2010); http://www.JACoW.org

[9] D. Thompson and W. Blokland, “A Shared Memory
Interface Between LabVIEW and EPICS,”
ICALEPCS’03, Gyeongju, October 2003, TU514,
p.275 (2003); http://www.JACoW.org

[10] J. Weber, M. Chin, C. Timossi, and E. Williams,
“Hardware and Software Development and
Integration in an FPGA Embedded Processor Based
Control System Module for the ALS,” PAC’07,
Albuquerque, June 2007, MOPAS031, p.503 (2007);
http://www.JACoW.org

[11] A. Götz, J. Butanowicz, L. Slezak, C. Scafuri and G.
Gaio, “Ubiquitous TANGO,” ICALEPCS’07,
Knoxville, October 2007, WPPA28, p.374 (2007);
http://www.JACoW.org

[12] J. Odagiri et. al., “Fully Embedded EPICS-Based
Control of Low Level RF System for SuperKEKB,”
IPAC’10, Kyoto, May 2010, WEPEB003, p.2686
(2010); http://www.JACoW.org

Proceedings of ICALEPCS2011, Grenoble, France THAAUST01

Integrating industrial/commercial devices 1173 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

