
GSI OPERATION SOFTWARE: MIGRATION FROM OpenVMS TO Linux

Ralf Huhmann, Günther Fröhlich, Susanne Jülicher, V. R.W Schaa, GSI, Darmstadt, Germany

Abstract

The current operation software at GSI, controlling the
linac, beam transfer lines, synchrotron and storage ring,
has been developed over a period of more than two decades
using OpenVMS on Alpha-Workstations. The GSI accel-
erator facilities will serve as an injector chain for the new
FAIR accelerator complex for which a control system is
currently developed. To enable reuse and integration of
parts of the distributed GSI software system, in particular
the linac operation software, within the FAIR control sys-
tem, the corresponding software components must be mi-
grated to Linux. Interoperability with FAIR controls appli-
cations is achieved by adding a generic middleware inter-
face accessible from Java applications. For porting appli-
cations to Linux a set of libraries and tools has been devel-
oped covering the necessary OpenVMS system functional-
ity. Currently, core applications and services are already
ported or rewritten and functionally tested but not in oper-
ational usage. This paper presents the current status of the
project and concepts for putting the migrated software into
operation.

MISSION

Presently, the operation software at GSI runs on a clus-
ter of DEC-Alpha1 machines. The computers’ OS is Open-
VMS. The user interface is realized by X-Window and Mo-
tif based clients. There are some hardware display and
control units, i.e. proprietary interfaced LED and LCD dis-
plays, knobs, analog gauges, etc. The software modules
for operation of the linear accelerator (LINAC), the trans-
fer lines, and common services are mainly written in For-
tran77. The central software components for operation
of the synchrotron (SIS) and the storage ring (ESR) are
written in Pascal. All programming languages use spe-
cific DEC extensions and a lot of OpenVMS specific sys-
tem calls. The X11 and Motif implementations embed the
X11 events into the OpenVMS system’s event scheme. We
aim to get rid of OpenVMS but to reuse the main parts of
the GSI operational software’s source code base by port-
ing the software to Linux. Additionally, the migration
shall enable interoperability with current or future devel-
opments, e.g. in Java on Linux. It showed up that most
of the operation applications written in Fortran77 could be
ported to Linux with minimal modification effort utilizing
the techniques, libraries, and tools described in [1]. Some
other Fortran components, especially system oriented ser-
vices were rewritten in C/C++/Java on Linux. The com-
ponents for SIS and ESR written in Pascal could not be

1 Alpha is today a brand of Hewlett-Packard.

Figure 1: GSI accelerator overview.

ported, mostly because no suitable compiler is available
which handles the DEC language extensions.

ISLANDS

Fortunately, software components for operation of the
SIS and ESR on one hand, and the LINAC and trans-
fer lines on the other hand, are only minimally coupled
(Fig. 2). Therefore, in step 1 a gateway mechanism was
developed to bridge these islands. The SIS and ESR op-
eration software will remain unchanged on OpenVMS and
will be excluded from migration in step 1. In a second step
those components will completely be replaced by the LSA
framework [2] with new Java applications.

New operation applications for the LINAC and transfer
lines are developed in Java on Linux and can be bridged
with the island of ported Fortran software.

BRIDGES

Fortran@Linux – Fortran@OpenVMS
On OpenVMS, the coupling between SIS/ESR operation

software and the LINAC software is realized by a service
which sends binary messages from one application to an-
other. It utilizes VMS mailboxes and raw ethernet com-
munication. Actually, for the ported applications on Linux
this API was implemented utilizing peer to peer TCP/IP
communication and a nameservice (Fig. 4 shows a GUI
monitoring the nameservice) to resolve the IP-address and
IP-port by the application name. In order to connect from
VMS to this framework a proxyservice was developed on

Proceedings of ICALEPCS2011, Grenoble, France MOPMS014

Upgrade of control systems 351 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Figure 2: Groups of operation software components in step
1 of migration.

Linux. In Fig. 3 you see as an example two OpenVMS ap-
plications V1 and V3 which connect via TCP/IP to a service
on Linux acting as a proxy for V1 and V3 and registering
those in the nameservice with the proxy’s address and port.
Messages from V1 or V3 to L1 or L2 on Linux are sent to

Figure 3: Binary data exchange between Linux and Open-
VMS.

the proxy which transmits the packet to its destination ap-
plication using the name service resolution on Linux. Vice
versa, a message from L1 or L2 to V1 or V3 is received by
the proxy since it registered V1 and V3 with the proxy’s
address and port in the nameservice. The proxy forwards
the message to OpenVMS via the corresponding TCP/IP
socket connection.

Fortran@Linux – Java@Linux

By the uv-architecture (Fig. 5) which is described in
more detail in [1] an observer pattern is realized to connect
Java applications to Fortran applications for data exchange.
Fortran applications serve as publisher, Java applications
subscribe to data objects. Requests, replies, and notifica-
tions are serialized over XML-streams.

Figure 4: GUI monitor of nameservice.

Figure 5: uv-architecture for data object exchange between
Fortran and Java applications.

Publisher The simple server-API for the Fortran ap-
plication allows to create and change at runtime a value
tree-structure (like adding files and folders to a file-
system), to change locally the numerical values of the leaf-
nodes, and to put data objects (i.e. arbitrary uv-trees) in
event-queues. Services like tree transfer of a read result,
value changes by clients, sending value change notifica-
tions to clients, processing structure changes and subscrip-
tions are hidden in the implementation of the API and are
transparent for the application. Value changes initiated by
a uv-client are notified to the application via callback.

Subscriber The client-API for the Java application is
to read the value tree structure or subtree structures. It sub-
scribes to folders for receiving structure changes or to leaf-
nodes for receiving numerical value changes or to event-
queues for receiving complex data objects. It allows setting
values of leaf-nodes of an uv-server. Figure 6 shows as an
example the value tree of a application seen by a generic
value browser utilizing the Java client-API.

CURRENT STATUS

Currently (middle of 2011), the main operation applica-
tions for the LINAC and transfer lines are ported to Linux
using the VMS system emulation libraries [1]. Some ser-
vices have been reimplemented, e.g. a central alarm ser-
vice, a service to launch and monitor applications on se-
lected beam lines, communication modules for dedicated

MOPMS014 Proceedings of ICALEPCS2011, Grenoble, France

352C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Upgrade of control systems



Figure 6: Value tree browser.

hardware control units in the main control room, and a
library for accelerator device access. A framework to
build the complete software stack from a tagged subver-
sion repository was developed. The above mentioned ser-
vices and APIs to bridge to remaining VMS software and
to new Java applications are implemented and tested.

MIGRATION PATH

Still missing are full integration tests of all operation
software components, a production run time environment
on Linux, deployment to the production system, perfor-
mance tests under production conditions, and control room
tests without and with beam.

Currently, a test console is set up which will serve as a
test site outside the main control room for integration tests
and run time environment. In order to switch the opera-

Figure 7: Main Control Room at GSI.

tion software to Linux it will be necessary to perform sev-
eral temporary integration tests in the main control room
(Fig. 7), first without beam, later with beam. Hence, to sus-
tain normal operation in the meantime, a procedure has to
be defined to enable switching between operation on Linux
and back to OpenVMS till the final quality standards are
reached. This switching procedure must cover the access
to the hardware control units of the consoles, and the in-
teroperation with the left OpenVMS software components.
Figure 8 shows the scheduled time scale of the remaining
migration path.

Figure 8: Schedule for migration of operation software.

CONCLUSION

Now, the feasibility studies and most of the implemen-
tation, porting, and unit testing has been completed. How-
ever, integration and launching in production environment
demand further efforts.

REFERENCES

[1] R. Huhmann, G.Fröhlich, S. Jülicher, V.RW Schaa, “GSI Op-
erating Software Migration Openvms to Linux”, Proceedings
of PCaPAC08, Ljubljana, Slovenia, MOX02, p. 4.

[2] J. Fitzek, R. Mueller, D. Ondreka, GSI, Darmstadt, Germany,
“Settings Management within the FAIR Control System
Based on the CERN LSA Framework”, Proceedings of PCa-
PAC 2010, Saskatoon, Saskatchewan, Canada, WEPL008,
p. 63.

Proceedings of ICALEPCS2011, Grenoble, France MOPMS014

Upgrade of control systems 353 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


