
BEAM SYNCHRONOUS DATA ACQUISITION FOR SWISSFEL TEST
INJECTOR

B. Kalantari, T. Korhonen, Paul Scherrer Institute, Villigen, Switzerland

Abstract

A 250 MeV injector facility at PSI has been constructed
to study the scientific and technological challenges of the
SwissFEL [1] project. Since in such pulsed machines in
principle every beam can have different characteristics,
due to varying machine parameters and/or conditions, it is
very crucial to be able to acquire and distinguish control
system data from one pulse to the next. In this paper we
describe the technique we have developed to perform
beam synchronous data acquisition at 100 Hz rate. This
has been particularly challenging since it had to provide
us with a reliable and real-time data acquisition method in
a non real-time control system. We describe how this can
be achieved by employing a powerful and flexible timing
system with well defined interfaces to the control system.

INTRODUCTION
The 250-MeV Linear accelerator [2] at PSI has been

constructed as a test bed facility to help design,
development of concepts and proof of principles toward
realization of the SwissFEL project. This injector test
facility will be also used as the injector of the SwissFEL.

In general in operation of pulsed machines, e.g. FELs,
it is very crucial to be able to study and diagnose the
machine behaviour on pulse-to-pulse bases. Therefore it is
required that, the data generated by the machine
components is measured and collected at each pulse.
Furthermore it is also required that the collected data at
each pulse is clearly distinguished from those of another
pulse. The reliable, pulse-to-pulse data acquisition
requires a tight cooperation and well defined interface of
timing system with the control and measurement systems.
Considering the repetition rate of such machines, which is
normally high (from several tens to few hundred Hz), the
data acquisition and collection, will not be anymore a
trivial task to do. Our injector currently produces beam at
10 Hz repetition rate. However, since there are several
subsystems, e.g. Laser systems, which require 100 Hz
operation at the same time we have to be able to cope
with data acquisition at 100 Hz.

The pulse-to-pulse data acquisition across several
locally separated control/measurement nodes is also
known as Beam-Synchronous Data Acquisition to which
we refer by BS-DAQ in the rest of the paper. In the
following we first describe our BS-DAQ concept and then
briefly describe the timing system features and control
system interface which helped us to implement this
concept.

BS-DAQ CONCEPT
The problem of BS-DAQ is in fact that of real-time

data acquisition. Hence the first and the most important
issue to address is, to acquire and collect data in a
specified time interval. The time interval is specified by
the machine repetition rate, said the other way, time
interval between two consecutive machine pulses. So it is
crucial that a measurement device participating in BS-
DAQ demonstrates a deterministic behaviour. Hence, in
our mechanism we assume that the measurement device
has this important property. Closely related to this, is the
issue of presentation of the measurement in the control
system. In this regard we also assume that the measured
data is transformed to a control system object well within
the deadline determined by the repetition rate.

Local Buffering Concept
The heart of the BS-DAQ concept is the local buffering

of the generated data at the Input/Output Controller (IOC)
node. A similar concept has been also employed in LCLS
[3]. The major reason for this approach is that in our
control system the communication between IOC’s is via
an Ethernet-based protocol (EPICS Channel Access)
which provides no guarantees in determinism of the data
transmission delay (no upper bound on the delay).
However since the IOC’s demonstrate a real-time
behaviour at the local level, we collect the acquired data
locally at the beam or machine rate and then after
finishing the acquisition the data collected in the buffers
can be transferred via the communication network to the
remote client application for offline analysis i.e.
correlation studies.

Role of the Timing System
To make the local buffering work, we still need to

provide a minimal but reliable, real-time communication
across all locally separated IOC’s which participate in a
BS-DAQ run. This is because the measured data
belonging to the same pulse has to be synchronously
buffered at each IOC and it has to be possible to
distinguish each buffered element by a pulse ID (pulse
identification number). We use global event system of
Micro Research Finland (MRF) [4] for our timing system.
In the event system, an event generator in the central
master timing IOC generates timing information and
transmits them to all event receivers around the facility
via optical links. The pulse ID or pulse marker is a
unique, monotonically increasing number which is
assigned to each machine pulse. It is generated in the
central, master timing IOC and distributed via the timing
system to all IOC’s connected to the timing system (via

MOPKS011 Proceedings of ICALEPCS2011, Grenoble, France

180C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Process tuning and feedback systems

optical links). The pulse ID is received at each IOC via
the event receiver and is transformed to a control system
object where it can be used as an index of the acquired
data at each pulse.

Role of the Control System
The control system at each IOC provides the means for

control logic of the buffering mechanism. In our case all
the logic, mechanisms and required software objects has
been provided by the control system (EPICS) such that
no special object type or low level driver had to be
developed. The timing critical command/status data as
mentioned is provided by the timing systems but finally
presented as control system objects.

IMPLEMENTATION
In the implementation of the BS-DAQ mechanism, we

have chosen right from the beginning to develop a generic
control system software package so that the installation
and usage for the control system engineers is a plug and
play task which does not require any internal knowledge
of the mechanism. In this regard we should emphasize
that the EPICS toolkit had almost all the features that we
required for implementation of the BS-DAQ.

Overview
The master timing IOC which houses the event

generator is the central coordinator and synchronizer of
the BS-DAQ. An EPICS program which is driven by the
event systems interrupts determines, according to user
specified parameters, at what pulses each IOC has to
collect an EPICS channel. Then at each appropriate pulse,
a command is sent synchronously to all IOC’s via the
timing system. When the receivers in each IOC receive
the BS-DAQ commands, they find out if they have to
copy value of the specified EPICS channel into the
specified local buffer. The local buffers are realized by
using a standard EPICS record type called “compress”.
Along with each data buffer there is also a pulse ID buffer
to serve as the data index. A BS-DAQ run is initiated on-
demand by the user for specified number of pulses.
Typically the buffer length is selected such that at least 20
seconds interval can be covered. For example at 100 Hz
repetition rate a buffer with 2000 element should be
sufficient.

Control and Tweaking Knobs
A user (machine expert usually) who runs the BS-DAQ

has some knobs to control. These are as the following:
 Number of acquisitions: this determines the

total number of samples which will be
collected in the local buffers at each IOC.

 Spacing: this parameter specifies the spacing
between beam pulses which are sampled. For
example zero spacing causes the data
collection at each generated beam. A spacing

of one, means samples at every second beam
pulse will be collected.

 Defer cycles: this specifies how long to wait
after each beam before buffering of each
sample.

 Start/stop/abort/resume: these are the major
control knobs to start, stop, resume or abort a
BS-DAQ run.

Multi-user Operation
The BS-DAQ application is implemented such that it

allows several users to simultaneously run their own
independent BS-DAQ instance. Each user leases an
acquisition slot and takes control over that until the
acquisition is finished where the slot becomes free again
(by the user). Currently six slots are supported and it can
easily be expanded to more slots if required. In terms of
logic, control and timing resources there is practically no
limitation on increasing the number of acquisition slots.
On the other hand number of machine experts that would
use the application at the same time will not be a big
number.

Dynamic Configuration
Most of the configuration parameters of the BS-DAQ

can be specified at runtime. In particular the user can
decide what data (EPICS channel) goes to what available
buffer on an IOC. This makes the application very
flexible since it is not necessary to specify measured data
and the buffer which is going to be used in BS-DAQ at
IOC initialization time, hence there is no need to restart
the system. Furthermore, it allows better utilization of the
IOC resources such as memory. It also leads to smaller
and easier maintenance of the software package. Dynamic
configuration, on the other hand, makes setting up an
acquisition slot a rather complex task which involves
several steps such as finding a free slot, slot leasing,
finding free buffer, buffer assignments, etc. Currently the
high level user application that retrieves and analyzes the
collected data does this setup task. The high level
software that our machine experts use for this purpose is
Matlab.

First-Level Verifications
To provide a simple, first level cross-check in order to

see if the BS-DAQ has done a successful run, we
provided two verification methods. The first is to check if
the data (EPICS channel) to be taken is not in the alarm
state. The second is a check to see if there is any
irregularities in the collected pulse ID’s along with each
collected data.

Support for Waveforms
The BS-DAQ is also able to collect the vector data (that

has more than one element) at each sample in the same
way as it does for scalar data. This was needed to collect
the camera images or phase and amplitude waveforms in
the LLRF systems. The BS-DAQ mechanism handles
vectors data exactly in the same way as scalars. This was

Proceedings of ICALEPCS2011, Grenoble, France MOPKS011

Process tuning and feedback systems 181 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

achieved by introducing a parameter to BS-DAQ logic,
applied to every data, as sample size which is 1 for scalar
data and N for a vector with size N.

CONCLUSION
In this paper we have presented our approach to

perform Beam-Synchronous Data Acquisition (BS-DAQ)
in the SwissFEL test injector facility. The concept of local
buffering was presented and our implementation was
discussed in details.

REFERENCES
[1] http://www.psi.ch/swissfel/swissfel
[2] T. Schietinger, M.Aiba, B. Beutner, M. Dach, A.

Falone, R. Ganter, R. Ischebeck, F. Le Pimpec, N.
Milas, P. Narang, G.L. Orlandi, M. Pedrozzi, S.
Reiche, C. Vicario, “ FIRST COMMISSIONING
EXPERIENCE AT THE SwissFEL INJECTOR
TEST FACILITY”, Proceedings of Linear
Accelerator Conference LINAC2010, Tsukuba, Japan
Paul Scherrer Institut, CH-5232 Villigen PSI,
Switzerland

[3] J. Dusatko, S. Allison, M. Browne, P. Krejcik, “THE
LCLS TIMNG EVENT SYSTEM”, Proceedings of
BIW10, Santa Fe, New Mexico, US

[4] http://www.mrf.fi/

MOPKS011 Proceedings of ICALEPCS2011, Grenoble, France

182C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Process tuning and feedback systems

