
FROM DATA STORAGE TOWARDS DECISION MAKING:
LHC TECHNICAL DATA INTEGRATION AND ANALYSIS
A. Marsili∗, E.B. Holzer, A. Nordt, M. Sapinski, CERN, Geneva, Switzerland

Abstract

The monitoring of the beam conditions, equipment con-

ditions and measurements from the beam instrumentation

devices in CERN’s Large Hadron Collider (LHC) produce

more than 100 Gb/day of data. Such a big quantity of

data is unprecedented in accelerator monitoring and new

developments are needed to access, process, combine and

analyse data from different equipments.

The Beam Loss Monitoring (BLM) system has been one

of the most reliable equipments in the LHC during its 2010

run, issuing beam dumps when the detected losses were

above the defined abort thresholds. Furthermore, the BLM

system was able to detect and study unexpected losses, re-

quiring intensive offline analysis. This article describes

the techniques developed to: access the data produced

(� 50000 values/s); access relevant system layout informa-

tion; access, combine and display different machine data.

INTRODUCTION

Beam Losses

More than 3600 Beam Loss Monitors (BLMs) were in-

stalled around the LHC ring at expected loss locations, in

order to measure the beam losses in the LHC. Losses are

measured every 40μs, and these basic integration windows

are continuously combined into sliding windows called in-
tegration intervals, ranging from 40μs to 84 s.

All the data are used in real time: if the losses in one

integration interval exceed the predefined abort thresholds,

the beam is removed from the LHC ring. Some of these

data are stored in the LHC databases (DB): this article will

only describe the processing of these “offline” data.

The layout of the machine where the loss was produced

is just as important as the measured loss itself, and must be

understood.

Beam Loss Analysis Toolbox

This article describes the techniques used to access the

different databases, to combine the values of losses with

the positions of the BLMs and magnets and display them.

Each of these functionalities corresponds to a module, and

they are gathered in the Beam Loss Analysis toolbox.

Databases

The Layout database holds all the information about the

positions of magnets, BLMs and collimators. Its structure

∗ amarsili@cern.ch

is the one of a standard SQL database: several tables hold

all related information in different columns.

Every second, for each monitor, one value per integra-

tion interval is saved in the Measurement database during

one week. Some values are stored permanently in the Log-
ging database after applying a filter: if the difference be-

tween two subsequent values is higher than a delta set per

integration interval, the value is saved; if not, one value per

minute is saved. The thresholds are logged “on change”,

and once per day if they don’t change.

Both databases have the same structure: a variable name
BLM_EXPERT_NAME:LOSS_RSXX is associated to each in-

tegration interval ("XX" is its number). It holds two SQL

columns: timestamps and values (see Fig. 1). The structure

for the thresholds is the same.

Languages
The database access tool was designed to allow the ac-

cess, processing and display of data in a fast, user-friendly

and easy way. The language used for database access at the

time of development was PL/SQL. The Layout database is

still accessed with PL/SQL. The main programing and data

analysis framework at CERN is ROOT [3], a C++ frame-

work providing classes and a C++ interpretor called CINT.

The choice was made to use Python (2.4) as the develop-

ing language (and not CINT), since a true interpreter was

desirable. It links easily with ROOT (5.28) objects thanks

to the pyROOT project.

DATABASE ACCESS TECHNIQUES
The database module accesses data by PL/SQL and

Java, and returns them in a format compatible with the

other modules, described in Fig. 1. A direct display of the

data structure is shown in Fig. 4.

PL/SQL Access
The core of the SQL access class is a ROOT object called

TSQLServer [3]. Queries such as the time window or

variable names are automatically constructed and sent as

strings. The data corresponding to the required variables

are returned also as strings so the user does not have to

change method depending on the data type. SQL access is

still used for the Layout database access.

Java Access
The current way to access the measurement databases is

through an Application Programming Interface (API) writ-

ten in Java and provided by the data management section.

Proceedings of ICALEPCS2011, Grenoble, France MOPKN017

Data and information management 131 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‘BLM_1’ ‘BLM_2’ · · · ‘BLM_m’⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(‘t1’, v1)

(‘t2’, v2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(‘t3’, v3)

(‘t4’, v4)

(‘t5’, v5)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(‘t6’, v6)

(‘t7’, v7)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 1: Original structure of the object for the Logging

database, reflecting the DB structure. Dictionaries are rep-

resented between curly brackets “{ }”, lists between square

brackets “[]” and tuples between parentheses “()” The ver-

tical spaces between 2-tuples indicate the absence of data

between two times and show that all times are different.

It is able to be called from the command line, thus being

more portable: the data are not returned inside one specific

application. They are written to the shell standard output.

The API provides the user names and passwords for the

Logging and Measurement databases, so the user does not

have to. Most of the connection settings are written in a

file called configuration.properties [4]. Rather than

having the user edit this file separately (and for backward

compatibility), this file is generated automatically.

The default Python os module provides the interaction

with the unix shell from Python. The os.popen function

executes a string as a command line, which allows easy ma-

nipulation. It returns a “file iterator”, the default object for

reading text files. The use of this command line is further

described in [4]. The data flow is summarized in Fig. 2.

Data Structure

The object holding the data reflects the structure of the

database: dynamic lists of immutable 2–tuples holding the

timestamp as a string and the signal as a Python float (see

Fig. 1). The mapping is provided by a dictionary associat-

ing a key (the variable name as a string) to the correspond-

ing value (a list).

Figure 2: Data flow in the toolbox, from the user to the

databases and back.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‘name_of_graph_1’, ‘name_of_graph_2’, · · ·⎡
⎢⎣
(dcum1, v1)
(dcum2, v2)

...

⎤
⎥⎦ ,

⎡
⎢⎣
(dcum3, v3)
(dcum4, v4)

...

⎤
⎥⎦ , · · ·

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Figure 3: Final structure of “plotdict” object after data

combining. dcum1 is the position of BLM1, and v1 the

signal of BLM1 at the plotting time. See Fig. 5 for the cor-

responding graph.

DATA PROCESSING

Sorting BLMs
Currently, one of the main applications of the toolbox

is to display a longitudinal loss profile of a section of the

LHC at a requested timestamp (see Fig. 5). The names of

the BLMs are not displayed, but they contain all relevant

information: type of monitor (Ionisation Chamber (IC) or

Secondary Emission Monitor (SEM)), associated beam (B1

or B2), injection or extraction line. The process module

sorts the BLMs according to these criteria. The names are

then mapped with the longitudinal position of the BLM on

the LHC, called DCUM, which was obtained from the Lay-

out database. The resulting structure is shown in Fig. 3.

Linear Interpolation
One of the features of the Logging database is that no

BLM signal is recorded every second (see Fig. 1). A

specific second requested by the user may not have been

recorded. The choice was made to calculate a linear in-

terpolation between the previous and next entries to es-

timate the signal at this second. The algorithm in the

process module progressively checks the requested times-

tamp against a list of tuples. If the same time is found, the

value (2nd element of the tuple) is returned. If not, a linear

interpolation is calculated using the next entry in the list.

The algorithm has to do m×n operations, where m is the

number of monitors and n the number of tuples before the

requested second. The processing time is dominated by the

data access time in the case of the Logging database, when

only one second is requested in a time range composed of a

few tuples. It is not the case for the measurement database

(one tuple per second). If all seconds in the time range are

requested, the number of operations becomes m× N ·(N+1)
2

where N is the total number of tuples (seconds): the pro-

cessing time is dominating the access time. In this case,

a different algorithm is used with only one index for all

BLMs. The number of operations is then only m.

DISPLAY
The whole display module relies on ROOT objects, us-

ing TGraph for the plots and TCanvas for the display on

screen [3]. Each type of plot has its own class, and they all

MOPKN017 Proceedings of ICALEPCS2011, Grenoble, France

132C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management

Figure 4: Plot of the data as received from DB, showing

the time development of a loss (collimator scraping). Each

of the requested variables are given versus time. Note that

the values are not synchronised. The vertical black line

corresponds to the requested second. The requested plot is

shown in Fig. 5.

share methods to save the plot as seen on screen in a file

with an automatically generated and meaningful name.

Time Plot
The time plots reflect the structure of the DB: each graph

corresponds to one variable, with points only at recorded

times (see Fig. 4). The colours are automatically selected to

be as far away as possible from each other. The names are

ordered so that similar variables will have similar colours.

Longitudinal Plot
For the longitudinal plot of the LHC, the positions of

magnets and collimators are obtained from the Layout

database. The value of the threshold is obtained directly

from the Logging DB, and is mapped to the longitudinal

position similarly to the BLM signals. The final result is

shown in Fig. 5.

WRAPPING MODULE
All functions described previously are automatically ex-

ecuted when passing a timestamp and two values of longi-

tudinal position to the loss analysis class in the wrapping

module. In its basic behaviour, it:

• finds the corresponding BLMs, collimators and mag-

nets with information from the Layout DB;

• gets the losses and thresholds for the relevant BLMs

from the measurement or Logging DB;

• displays the losses versus time (see Fig. 4);

• combines all data to display the loss in the LHC at the

requested time (see Fig. 5).

The wrapping module also provides additional methods to:

• save the data set;

• print all the names of the LHC elements in longitudi-

nal order;

Figure 5: Final display, showing the longitudinal develop-

ment of a loss (collimator scraping), and the positions of

the magnets (blue boxes) and the collimators (red boxes)

The vertical axis is the value of loss or threshold of one

BLM, and the horizontal axis is its longitudinal position.

• search for a string in the BLM names;

• plot a vertical line at a given longitudinal position;

• plot the ratio signal/threshold for each BLM;

• order BLMs by “closeness to threshold”;

• plot the beam intensity at the time;

• plot the position of the jaws of the displayed collima-

tors;

• plot the signals of the Beam Position Monitors;

• plot the optics in the LHC.

CONCLUSION AND FUTURE
IMPROVEMENTS

In this paper, a tool allowing the access, processing and

display of data in a fast, user-friendly and efficient way

was presented. Data can be requested automatically with a

few simple arguments such as timestamp and position, and

are immediately available for display or further processing.

This tool is now used as a standard database access in the

CERN Beam Loss section.

The future improvements include parallel downloading

and processing of data, and adaptation to the new vector

format for BLM-specific databases.

REFERENCES
[1] All available views, C. Roderick, BE-CO-DM,

http://lhc-logging.web.cern.ch/lhc-logging/

software/public_data_access_views.jpg

[2] LHC Logging Service, CERN-AB-Note-2006-046,

http://lhc-logging.web.cern.ch/lhc-logging/

software/default.htm

[3] ROOT class index, http://root.cern.ch/root/

html528/ClassIndex.html

[4] Logging Data Extraction Client, Command Line API,

https://espace.cern.ch/be-dep/CO/DM/CALS/

other/CommandLineManual.pdf

Proceedings of ICALEPCS2011, Grenoble, France MOPKN017

Data and information management 133 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

