
HYPERARCHIVER: AN EPICS ARCHIVER PROTOTYPE BASED ON
HYPERTABLE

M. Giacchini, L. Giovannini, M. Montis, G. Bassato, J.A. Vasquez, G. Prete, A. Andrighetto,
INFN/LNL, Legnaro (PD), Italy

R. Petkus, BNL, Upton Long Island, New York, USA. R. Lange, HZB, Berlin, Germany
K. Kasemir, ORNL, OakRidge, Tennesse, USA.
M. Del Campo, ESS-Bilbao, Zamundio, Spain

J. Jugo, University of the Basque Country, Leiola, Spain.

Abstract
This work started in the context of NSLS2 project at

Brookhaven National Laboratory. The NSLS2 control
system foresees a very high number of PV variables and
has strict requirements in terms of archiving/retrieving
rate: our goal was to store 10K PV/sec and retrieve 4K
PV/sec for a group of 4 signals. The HyperArchiver [1] is
an EPICS [2] Archiver implementation engined by
Hypertable, an open source database whose internal
architecture is derived from Google's Big Table. We
discuss the performance of HyperArchiver and present the
results of some comparative tests.

EPICS ARCHIVER BRIEF HISTORY
The Channel Archiver [3] is an archiving tool-set for

EPICS based control systems. It can archive any kind of
record available through Channel Access [4], the EPICS
network protocol. Bob Dalesio designed the original
index file, data file layout, and implemented the first
prototype of Channel Archiver. From then on, many
people in the collaboration have been involved on this
EPICS extension. The largely used Archiver version is
still based on that design and last release is dated on
August 29, 2006. That version is based on its own binary
file format to archive the PVs. In July 2009 SNS stopped
using such version and designed a new archiver. The new
version can be engined with two kinds of RDB: MySQL
or Oracle. All code has been written in Java and
embedded into the Control System Studio (CSS)[5]. CSS
can be used to browse the data and to retrieve them. The
SNS archiver is based on Oracle RDB in production and
MySQL for test purposes; the data base is accessible via
Control System Studio (CSS) data browser. This archiver
version realized at SNS embeds a Java Archiver into CSS.

TARGET
NSLS2 project at BNL expects a large amount of data

that have to be acquired really fast. The goal was storing
10K PV/sec and retrieving 4K PV/sec for a group of 4
signals with a more reliable and safe archiving
architecture. The SNS archiver, based on Oracle, seems
not fast enough and expensive because of Oracle DB
licence fee. The MySQL version has potential scalability
concerns, and is designed for a single machine, then

heavy processing loads may require expensive hardware
and ad hoc solutions. At that time, summer 2009, two
approaches were evaluated:

• Rewriting the Rtree and double-linked list embedded
DB structure

• Look for a complete replacement of the embedded
DB

 After an initial period spent in analysing the first
solution, we switched to the second one and looked for a
completely new technology. The idea came from the
observation that the fastest and largest DB available
nowadays is Google, whose search engine is based on the
proprietary BigTable filesystem. Google never published
the details of Bigtable implementation, nor released a
licensed version of its filesystem. However, we found an
open source product based on similar concepts and
technology (Hypertable [6]) and started working on it.
Hypertable is a massive, parallel, high performance
database, that isn't a RDB nor a SQL DB. During our first
tests, Hypertable was only available as part of an open
source software project (under GNU2 Licence).
Nowadays Hypertable is delivered either in a free version
(used for our project) and in a commercial version (by
Hypertable Inc.) with payable support. We are using now
the 0.9.6.0 version (the last beta release); the roadmap has
fixed the first major release 1.0 in December 31st 2011,
which will mark the end of the beta period and will
introduce a fully functional BigTable implementation.

SYSTEM DESCRIPTION
The system used is a virtual Linux box with 16 CPUs,

10 GB Ram and 3.6 TB of ISCSI disk space on a HP
server model DL380G7. A similar system running on a
native OS, instead of a virtualized box, would exhibit
better performances: we decided, however, to use a virtual
machine to make easy cloning the “box” and sharing it
with other developers, saving them the time to set-up a
complete system from scratch. The virtual layer
technology we used is KVM and the underlying operating
system is Linux CentOS 5 (a RedHat Linux Enterprise
recompiled from source).

The ISCSI disk has been tested separately to be sure it
couldn't be a bottleneck for our tests and it showed a R/W

MOPKN012 Proceedings of ICALEPCS2011, Grenoble, France

114C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management

speed of 45 MB/sec; we can assume, therefore, it didn't
affect our evaluation.

The bench-test core is an IOC with the following
features:

• 10K Record type Analog Input
• Every record has a scan rate 1 sec

The HyperArchiver is configured to insert 10K
samples/sec and to extract, from CSS, 1K samples of 4
PVs.

The HyperArchiver configuration is an hybrid system
based on MySQL and Hypertable 0.9.5.0.pre6. MYSQL
DB is used to store the configuration setup while
Hypertable is used to store the Channel data:
channelName Status, TimeStamp, Severity, Simple Mode,
SimplePeriod, type, and value.

The data read from Channel Access by Channel
Archive Engine v.1.2.5 through JCA are concatenated in a
string and stored into Hypertable.

The Hypertable schema has only one column named
“pv”, the rowkey is based on a PV name with the EPICS
Time Stamp as follow:

• Rowkey: 100:aiExample.1315639247116
• ColumName: pv
• Data:100:aiExample#c#LOW_ALARM#c#1315639

247116#c#MINOR#c##c#jdbc:mysql://localhost:330
6/archive#c#Monitor#c#10.0#c#double#c#3.0

Implementation Details
Starting from the original Archiver developed at SNS

and based on Java, we made minor changes on various
classes; the most important work has been done on
package named org.csstudio.archive.rdb which has been
designed as shown in Figure 1. The new package named
org.csstudio.archive.htrdb2 (Figure 2) has deep

modifications in the class named RDBArchive. Using the
Trift client API we added two new classes (Figure 2) :

• HTArchive which contain connections methods;
• HtTableArchiveSerialized which contains

methods to manages datas.

Figure 2: Classe's schema of org.csstudio.archive.htrdb2
package.

The data stored can be readout by dataBrowser2,
replacing the package org.csstudio.archivereaderrdb by
org.csstudio.archivereader.htrdb2. The most importat
modification is on RawSampleIterator class where the
Hypertable connection and retrieve task has been realized.

PERFORMANCES
Several test has been carried out at LNL. Using the

BNL iocServer we started with a scan period of 0.1 sec
for each PV of 10K analog input records. The archive
engine seems to be unable to sustain that acquisition rate,
so we decide to postpone a more detailed analysis on this
and moved a step back using a scan period of 1 sec. for all
PVs. With this set-up the average insertion rate is 13
MB/s and the retrieve rate of 13MB/s from CSS. Data
were retrieved through the CSS GUI.

CONCLUSIONS
BNL has proposed a common test bench to evaluate the
various archiver developments[7]. We used that
guidelines for our tests to share and compare our
benchmarks with the EPICS community. As mentioned
before, the HyperArchiver is still an hybrid system in his
internal architecture; it shows anyway good performances
and seems a promising research line. Keeping in mind the
fundamental spirit of collaboration in Epics community,
future steps on this project will be done after a discussion
with the laboratories interested on his development. This
will help us to better focus on common targets and
methods, and obtain the maximum results with the largest
benefits for the community.

Figure 1: Generic RDB Archive Engine model.

Engine Model

Archive Channel
- Monitored

or scanned

Archive Group

has many

Sample Buffer

has one

Write Thread write* read 1 RDB Archive

EngineServer
(HTTP)

scan latest Sample
PV

ScanThread

Scanner

ScanList

has many

executes

read

Buffer Stats

1

create, start, stop

Proceedings of ICALEPCS2011, Grenoble, France MOPKN012

Data and information management 115 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

ACKNOWLEDGEMENTS
Sincere acknowledgements to Bob Dalesio who has

made possible the beginning of this research during the
stage of M. Giacchini at BNL in 2009.
Many thanks to the great BNL controls team and
particularly to R. Petkus and R. Lange for their valuable
help. The highly professional collaboration of K.Kasemir
from SNS, his great experience and skills were essential.
Last but not least, acknowledgements to ESS Bilbao, in
particular to M.Campo and Prof. J.Jugo who first trusted
on this project and brought it to the production stage at
ESS-Bilbao's facilities at Zamundio (Spain) [8].

REFERENCES
[1] HyperArchiver:

http://www.lnl.infn.it/~epics/joomla/archiver.html
[2] Epics: http://www.aps.anl.gov/epics/
[3] ChannelArchiver:

http://sourceforge.net/apps/trac/epicschanarch/wiki
[4] J.O. Hill: Channel Access: A Software Bus for the LAACS,

ICALEPCS 1989, Vancuuver.
[5] Control System Studio (CSS):

http://cs-studio.sourceforge.net/
[7] ICALEPCS 11, N. Malitsky, D.Dohan “A Prototype of the

Next EPICS Archiver Based on the SciDB Approach”
[8] IPAC 11, M. del Campo, J. Jugo, M. Giacchini, L.

Giovannini “EPICS HYPERARCHIVER: INITIAL
TESTS AT ESSBILBAO”

MOPKN012 Proceedings of ICALEPCS2011, Grenoble, France

116C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management

