
HIGH-INTEGRITY SOFTWARE, COMPUTATION AND THE SCIENTIFIC
METHOD

Les Hatton∗, CISM, Kingston University, UK

Abstract

Computation rightly occupies a central role in modern
science. Datasets are enormous and the processing impli-
cations of some algorithms are equally staggering. With
the continuing difficulties in quantifying the results of com-
plex computations, it is of increasing importance to under-
stand its role in the essentially Popperian scientific method.
In this paper, some of the problems with computation, for
example the long-term unquantifiable presence of undis-
covered defect, problems with programming languages and
process issues will be explored with numerous examples.
One of the aims of the paper is to understand the implica-
tions of trying to produce high-integrity software and the
limitations which still exist.

Unfortunately Computer Science itself suffers from an
inability to be suitably critical of its practices and has oper-
ated in a largely measurement-free vacuum since its earli-
est days. Within CS itself, this has not been so damaging in
that it simply leads to unconstrained creativity and a rapid
turnover of new technologies. In the applied sciences how-
ever which have to depend on computational results, such
unquantifiability significantly undermines trust.

It is time this particular demon was put to rest.

BACKGROUND

High-integrity systems are fundamentally those systems
which on failure, have a significant impact on humans, or-
ganisations, society or the environment. It is traditional to
split these into two categories

• Safety-critical systems. Such systems on failure, have
a direct impact on human safety or indirectly by dam-
aging the environment. Examples of these include
aircraft active avionics, railway signalling software or
medical imaging software.

• Mission-critical systems. Such systems on failure,
are typically associated with financial loss. In an or-
ganisation this could be failure of its accounting sys-
tems, customer information or other enterprise sys-
tems. However, in the context of science, such sys-
tems on failure would be directly associated with un-
intentionally misleading results. Indirectly, this may
lead to financial loss but the essential issue here is un-
trustworthiness of the results.

In the context of Accelerator and Large Experimental
Physics Control Systems, both categories will be repre-

∗ lesh@oakcomp.co.uk

sented. The failure of Control Systems is frequently safety-
critical whilst data acquisition and processing is mission-
critical in that failure here may well lead to misleading re-
sults.

The processes involved in producing Safety-Critical Sys-
tems are well-rehearsed, well-documented by numerous
standards, both military (DO-178B, DO-254, DEF STAN
OO-55/56) and civilian (CENELEC EN 50126, EN 50128,
EN 50129, IEC 61508) and strongly associated with legal
liability. In this paper, therefore, I will restrict myself to
the latter of these issues, viz. the risk of unintentionally
misleading results and the potential impact on scientific re-
search.

SOME ISSUES IN HIGH-INTEGRITY
SOFTWARE

The Scientific Method

The highly influential 20th century philosopher Karl
Popper was instrumental in delineating the scientific
method by laying down the notions of deniability. Deni-
ability in an experimental context is fundamentally linked
to openness of technique and reproducibility of result. We
make progress by ruthlessly eliminating those experimen-
tal results which cannot be reproduced within some suitable
bound of error when an identical experiment is performed.
Such methods have served science well and have come to
embody the very essence of the scientific method.

I will now restate deniability in a software context as

• Truth cannot be verified by software testing, it can
only be falsified,

• Falsification requires quantification of computational
modelling error,

• Deniability is at the heart of progress in scientific
modelling. We are always seeking to deny the truth
of a result and continued failure simply adds weight
to a result but not verification,

In this context, Computer Science has not done well.

Software Defect

The principle enemy of the programmer is software de-
fect. In the absence of a well-defined set of categories, I
will define a defect as a fault or mistake in the software
which then causes the software to fail. Software failure
occurs when the behaviour of a computer program departs
from its expected behaviour. Every failure is associated
with at least one fault but not all faults fail.

There are many kinds of fault and there are many kinds
of failure.

Proceedings of ICALEPCS2011, Grenoble, France FRAAUIO05

Protection and safety systems 1297 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Fault categories Although by no means exhaustive or
independent, these might include

• The use of ambiguous programming language features
as described for example by [4],

• Mistakes in logic, for example an incorrect program-
ming branch,

• Errors of omission, (i.e. something important left out
such as initialisation statement),

• Errors of commission, (i.e. something put in which
should not be there),

• Various abuses of floating-point arithmetic, [11],

Fault occurrence rates have been thoroughly examined
by many researchers, for example the seminal contributions
of Basili, [2]. Such faults are typically identified as occur-
ring in the range 1-10 per thousand executable lines of code
for typical software with arguably the best software around
0.1 on this scale.

Where computer scientists have made little progress is
on quantifying the effects these faults have on the actual
output values of the computation, in other words on how
they fail. Let me then consider different kinds of failure.

Failure categories Examples of these might include

• An unintended program halt. These can occur for
many reasons in programming languages. For exam-
ple, an incorrectly dereferenced pointer or a pointer
alignment problem in languages like C and C++; a di-
vide by zero which causes a run-time exception; over-
flows; underflows and so on. Such errors although
traumatic for a safety-critical system because service
is interrupted perhaps during a critical phase, they
tend not to be particularly serious in scientific com-
putation because the scientist is immediately alerted
that there is something wrong.

• Wildly incorrect results. These are results which
are so far wrong that they cannot be correct as for
example the rather surprised Malaysian man who
received a $218 trillion dollar phone bill in 2006,
(http://www.msnbc.msn.com/id/12247590
/ns/world news-weird news/t/think-your-phone-bill-
high-try-trillion/, accessed 30-Sep-2011). These are
not serious in scientific computing either as they
are readily identifiable as spurious. Such a result is
extremely unlikely to mislead.

• Subtly incorrect results. These are results which are
profoundly dangerous in scientific computing. It may
be thought if they are subtle, they cannot mislead but
this was profoundly disproved by [7] who showed that
the presence of previously undetected software faults
in a comparison of 9 seismic data processing pack-
ages independently developed to the same mathemat-
ical specifications effectively destroyed the level of
agreement to the point where the data became highly
misleading. This is exemplified in Figure 1. Although
some 17 years old, the programming language used is

still in widespread use (Fortran), the packages are still
in widespread use, the software processes used are ef-
fectively unchanged today and scientific programmers
still make mistakes, so its relevance is undiminished.

The experiment of [7] is known as an N-version exper-
iment. Although independent versions of software written
to the same specifications do not fail independently, [12],
[14], they fail sufficiently independently to provide impor-
tant insight into quantifying the effects of failure.

Another effective way of achieving this is to release all
source code so that it can be independently checked. This is
very similar to N-version experiments in that source code
is subjected to many analysing minds in parallel. In N-
version work, this leads to N versions. In open source
work, this will usually lead to one version, independently
checked by N persons.

There have been many attempts to build models which
can predict unreliability based on some statically measur-
able property of software, for example the cyclomatic com-
plexity, (a graph theoretic measure of decision complexity),
first proposed by McCabe [13] but these have not been very
successful, [3].

A typical example of a correlation between recorded de-
fects and the cyclomatic number in a study by Hopkins and
Hatton [8] illustrates the unfocused relationship between
them with no statistically significant patterns.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

de

fe
ct

s

Cyclomatic complexity

Cyclomatic Complexity v. Defects

Figure 2: Recorded defects over a period of several years
in the NAG Fortran library plotted against the cyclomatic
number of the component in which the respective defects
were found.

Programming Languages

Problems with ambiguity in programming languages
have been reported on many occasions and regularly oc-
cur in scientific software in multiple languages, [4]. These
include very simple issues like the use of uninitialised vari-
ables to far more subtle aspects of computation such as any
reliance on a specified order of evaluation, (which is not
defined for the majority of programming languages).

Recent research suggests that there are implementation
and language independent properties which can be ex-
ploited. In [6] I used information theoretic arguments in the

FRAAUIO05 Proceedings of ICALEPCS2011, Grenoble, France

1298C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Protection and safety systems

Figure 1: A comparison of nine independently developed packages in the same programming language on the same input
seismological data shown by [7]. The y-axis is depth of burial in the earth and the x-axis is distance along the surface of
the earth. The outputs vary in the second and sometimes first significant figure. The data needs about three significant
figures of accuracy to resolve the geological features (in this case an unconformity trap for a gas field in the North Sea)
sufficiently accurately for statistically reliable positioning of a well. The differences were demonstrated to be entirely
due to software faults which had been present in the packages in some cases for years. This is by no means unusual as
shown by Adams, [1] who demonstrated that a significant number of faults took hundreds and in some cases thousands of
execution years to fail for the first time.

context of statistical mechanics to show that the probabil-
ity pi of the ith software component in a system containing
say, ti programming tokens in total, obeyed a power-law
in the alphabet of unique tokens ai used to build it inde-
pendently of the programming language or its application
area. A token here is a keyword, identifier name or opera-
tor of a programming language.

pi ≈ (ai)
−β (1)

This in turn leads to a simple prediction that defects will
also obey a power-law. One important property of power-
law distributions is clustering so this gives some theoretical
support for the widely-observed phenomenon that defects
in software systems do in fact cluster. This can clearly be
seen for example in the NAG Fortran scientific library as
demonstrated by Hopkins and Hatton [8] as shown in ta-

ble 1 where all reported defects cluster in only 30% of the
executable lines.

Table 1: Defects in NAG Fortran Library

Defects Components XLOC

0 2865 179947
1 530 47669
2 129 14963
3 82 13220
4 31 5084
5 10 1195
6 4 1153
7 3 1025

> 7 5 1867

Proceedings of ICALEPCS2011, Grenoble, France FRAAUIO05

Protection and safety systems 1299 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

As I pointed out in [6] however, this appears to be a sta-
tistical phenomenon with little to be gained by asking the
question why are almost 80% of all components defect free.
This is akin to asking why somebody has won the lottery,
the answer being of course that everybody else didn’t.

Clustering is of real value in software testing because if
a defect is found, then there is an increased probability of
finding another if the same component is re-examined. In
other words test effectiveness is improved.

Software Process

Software process in its many forms has become synony-
mous with High-Integrity developments thanks to initia-
tives such as the CMMi (Capability Maturity Model Inte-
gration) at the Software Engineering Institute of Carnegie-
Mellon. This in turn was based on the pioneering work of
Humphrey, [9], [10]. The principle notions of this maturity
process enabling an organisation to progress through var-
ious levels towards full defect management, tracking and
prevention have proven to be of great importance.

As with all good things though, there is no question
that some implementations of these ideals have become
poisoned by bureaucracy and it is all too easy for com-
placency to creep in, [5]. Nowhere is this more tragically
seen than in the events leading up the Afghanistan
crash of a RAF Nimrod in 2006, (http://www.official-
documents.gov.uk/document/hc0809/hc10/1025/1025.pdf,
accessed 01-Oct-2011). In his summing-up, Charles
Haddon-Cave QC, author of the independent review
stated:

“Unfortunately, the Nimrod Safety Case was
a lamentable job from start to finish. It was rid-
dled with errors. It missed the key dangers. Its
production is a story of incompetence, compla-
cency and cynicism.”

As important as management of software process is, it
should be noted that it makes no guarantees and can shed
little light on the effect that residual delivered defects can
have on the output of a computation.

Specific Issues in High-Integrity

In the preparation to this paper, I was made aware of a
number of issues of relevance in the sphere of Accelerator
and Large Experimental Physics Control Systems and I will
list these here and make comments on them based on the
background above.

Risk versus ingenuity The LHC (Large Hadron Col-
lider) is novel and ingenuity figures large even to get the
machine realised. However, risk has always accompanied
ingenuity. An ingenious solution is almost by definition
new. However new solutions carry risk far more than well-
tried solutions because not all of their potential side-effects
have been realised. As I stated at the beginning, in terms of

dealing with potential safety, this remains a well-rehearsed
process with a number of techniques available such as
FMECA (Failure Modes, Effects and Criticality Analysis).

Ingenious software solutions are a little different. Inge-
nuity in software can and often has been associated with
obscurity. Obscurity in software is usually a menace be-
cause it reduces the power of peer review. Peer review is
one of the main weapons in the battle against software de-
fect.

Knowledge transfer and Education This is a vital
area. Many of the ways that the problems described earlier
in this paper manifest themselves, would be ameliorated
with education. Problems with programming languages;
the acceptance of basic training in software engineering
methods for scientists; engineering technologies such as
software redundancy; the imperative for reproducibility;
fundamental notions of how to test software and the real-
isation that software testing is Poppperian in the deniable
sense I defined at the beginning of this article, and so on.

In terms of the accuracy of the results of a computation,
it is not only the specification, often resident in just a few
minds, which is of value. Ultimately, the results depend on
the code. The code must therefore be disseminated with the
specification to maximise the chance of reproducibility.

At the risk of causing a little upset, I personally have
found some scientists highly resistant to the notion that
their code is almost inevitably in error. Amongst such sci-
entists, there seems to be the notion that in comparison
to scientific research, software implementation is in some
sense ’easy’. I have been a practising scientist for much
of my career and am a competent mathematician but the
formidable difficulties presented by trying to verify the re-
sults of a scientific computation are enough to beat humility
into anyone who realises just how difficult it is.

Consequently, I would like all people who deal with sci-
entific software to respond to being faced with 100,000
lines of code in the same way, if we’ve done a really good
job, there will only be around 100 defects in this of which
a significant number may well undermine the accuracy of
the results. That is a refreshing, pragmatic and above all,
justified approach and I sincerely hope that education will
enable this.

Approaches to Design It is commonly thought that
High-Integrity systems are specified, built, tested and re-
leased. This rather comfortable viewpoint is still frequently
taught in universities. In my experience, it could not be
further from the truth. In contrast, every stage of the imple-
mentation of a trustworthy system is accompanied by iter-
ation or prototyping to make sure ideas are feasible before
cementing them into a system.

As a very simple recommendation, it is not common for
software testers to be included at the design stage. They
must however be included from the earliest days because
testability is an excellent brake on vaulting and frequently
unimplementable ambition.

FRAAUIO05 Proceedings of ICALEPCS2011, Grenoble, France

1300C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Protection and safety systems

Dealing with technological leaps In High-Integrity
systems, the ideal case generally is to ignore them on
the grounds that they carry too much risk as described in
the section above. However, each must be taken on its
own merits recognising that some technological leaps carry
great benefit. A very simple example arises from the in-
teroperability and openness of the Internet protocols. The
Internet was not designed and no doubt if we had tried, we
would have failed. However, from these tiny beginnings
of portability and openness allowing cooperating but dis-
parate development, the vast complexity and indeed relia-
bility, of the Internet evolved to everybody’s benefit.

CONCLUSIONS

In this essay, I have tried to present some background on
why it is so difficult to quantify the inevitable inaccuracy in
the results of scientific computation and why the notions of
Popperian deniability demand that we make more progress
in this vital area.

I have pointed out a few areas in which we are mak-
ing progress, for example by designing N-versions systems
but these are very expensive. Ultimately, there seems no
alternative than to open all source code to public scrutiny
and hope to garner the same benefits that open source has
brought for example to the world of operating systems,
where the Linux kernel is now one of the most reliable
complex pieces of software the human race has ever built.

Perhaps we can do the same with scientific computation.

REFERENCES

[1] E. Adams. Optimising preventive service of software prod-
ucts. IBM Journal of Research and Development, 1(28):2–
14, 1984.

[2] B. Boehm, H.D. Romback, and M.V. Zelkwitz. Foundations
of empirical software engineering: the legacy of Victor R.
Basili. Springer, 1st edition, 2005. ISBN 3-540-24547-2.

[3] N.E. Fenton and M. Neil. A critique of software defect pre-
diction models. IEEE Transactions on Software Engineer-
ing, 25(5):675–689, 1999.

[4] L. Hatton. The T experiments: Errors in scientific software.
IEEE Computational Science and Engineering, 4(2):27–38,
April 1997.

[5] L. Hatton. Bureaucracy, Safety and Software: a potentially
lethal cocktail. In C. Dale and T. Anderson, editors, Mak-
ing Systems Safer: Proceedings of the 18th Safety-Critical
Systems Symposium, pages p.21–36, London, UK, 2009.
Springer.

[6] L. Hatton. Scientific computation and the scientific method:
a tentative road map for convergence. In IFIP / SIAM / NIST
Working Conference on Uncertainty Quantification in Sci-
entific Computing, 2011.

[7] L. Hatton and A. Roberts. How accurate is scientific soft-
ware ? IEEE Transactions on Software Engineering, 20(10),
1994.

[8] T.R. Hopkins and L. Hatton. Defect correlations in a major
numerical library. Submitted for publication, 2008. Preprint
available at http://www.leshatton.org/NAG01 01-08.html.

[9] W. Humphrey. Managing the Software Process. Addison-
Wesley, 1989. ISBN 0-201-18095-2.

[10] W. Humphrey. A discipline of software engineering.
Addison-Wesley, 1995. ISBN 0-201-54610-8.

[11] W. Kahan. Desperately needed remedies for the Undebugga-
bility of Large Floating-Point Computations in Science and
Engineering. In IFIP / SIAM / NIST Working Conference on
Uncertainty Quantification in Scientific Computing, 2011.

[12] J.C. Knight and N.G. Leveson. An experimental evalua-
tion of the assumption of independence in multi-version pro-
gramming. IEEE Transactions on Software Engineering,
12(1):96–109, 1986.

[13] T. McCabe. A software complexity measure. IEEE Trans-
actions on Software Engineering, 2(4):308–320, 1976.

[14] Meine van der Meulen and Miguel A. Revilla. The effective-
ness of software diversity in a large population of programs.
IEEE Trans. Software Eng., 34(6):753–764, 2008.

Proceedings of ICALEPCS2011, Grenoble, France FRAAUIO05

Protection and safety systems 1301 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

