
APPLICATION SOFTWARE FOR THE BSP-100 BEAM POSITION
MONITOR AT THE APS∗

Hairong Shang† , Louis Emery, Robert Soliday, W. Eric Norum, Glenn Decker
ANL, Argonne, IL 60439, USA

Abstract

The BSP-100 beam position monitor (BPM) was com-
missioned and installed at the Advanced Photon Source
(APS) in a fraction of the ring as an upgrade to the present
turn-by-turn BPMs. Keeping the same rf front end of
the present BPMs, the BSP-100 BPM adds a high-speed
analog-to-digital converter and uses a field-programmable
gate array (FPGA) to perform the signal processing. The
main advantage of the new system is a much better signal-
to-noise ratio as all the bunches in the stored beam can
now be (selectively) sampled each turn. The implemen-
tation requires a much more complex timing control. We
report on the high-level software that controls, saves, re-
stores, and compares the timing of the BSP-100 BPM. This
software uses Tcl/Tk for the graphical user interface, the
SDDS Toolkit for data processing, and SDDS-EPICS com-
pliant tools for saving and restoring.

INTRODUCTION

The Monopulse Beam Position Monitor (MpBPM) is a
broadband (10 MHz) beam position monitor designed to
measure single-turn and multi-turn beam position at the
Advanced Photon Source. Recently, the MpBPM system
was upgraded [1] by replacing its aging 12-bit signal con-
ditioning and digitizing unit (SCDU) with the BSP-100
module [2] (i.e., BPM Signal Processor), which consists of
high-speed analog-to-digital converters (ADCs) and a field-
programmable gate array (FPGA) that performs the signal
processing. In addition, the BSP-100 controls the BPM rf
receiver’s X/Y plane and 0/180 phase selection.

This paper reports on the software used to control the
data acquisition block of the BSP-100. Other functions of
the BSP-100, such as providing orbit averages and rms or-
bit motion processing, are not covered.

ACQUISITION CONTROL RAM

The BSP-100 is a standalone Experimental Physics and
Industrial Control System (EPICS) input/output controller
(IOC) that processes the delta and sum signals of four
BPMs, producing one-turn averages of the X or Y data (or
both) and a processed sum signal. There are eight high-
speed 14-bit digitizers (Analog Device AD6645) running at
a sample rate of 88 MHz, which is one-fourth of the APS rf
frequency. The acquisition is controlled by an FPGA using
an acquisition-control RAM of 3888 32-bit values. This

∗Work supported by U.S. Department of Energy, Office of Science, Of-
fice of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

† shang@aps.anl.gov

array allows sample-by-sample control of up to 12 storage-
ring turns. This is an immense improvement over the old
SCDUs, which sampled data only once per turn. The bit
assignments for each sample period are shown in Fig. 1.

Figure 1: Acquisition control RAM bit assignments.

Some of the bits are specific to a BPM receiver while
the rest are global to the four receivers. The assigned
bits are “Use this sample,” “Plane Switch,” “Computation
Channel,” “Commutation Switch,” “Commutation Negate,”
“Save this Sample,” “Self Test,” “Turn Marker,” and “Wrap
Marker,” the detailed meanings of which are found in [2].
As illustrated in Fig. 2, the bits are set according to the tim-
ing pattern of the stored bunches and the width of the re-
ceiver pulses. The RAM is accessed with an 3888-element
unsigned integer EPICS waveform PV.

Figure 2: Sketch of a BPM (sum) signal and timing control
bits for multiple bunches.

The above indicates that the acquisition control is po-
tentially very complicated. The Advanced Photon Source
runs in three bunch pattern modes, and machine studies can
use any bunch pattern. To maintain and debug the RAM,
a digital-scope waveform recorder was implemented in the
FPGA. BPM delta and sum signals are available in eight
4096-sample EPICS waveforms PVs. Another 4096 16-bit
integer waveform PV is created taking the lower 16 bits of
the control words. These waveforms should be displayed
together for inspecting data and control bits.

A control system turn-by-turn time reference is used

Proceedings of ICALEPCS2009, Kobe, Japan TUP036

Operational Tools

167



by the FPGA to start the acquisition sequence. We ex-
pect some time offset, different for each BPM, between
the passage of a bunch in bucket “0” and the time refer-
ence (Fig. 2). Thus the acquisition sequence starts at some
bucket other than “0.”

The first stage of setting up the control RAM in the
FPGA is to create the desired control pattern for the stored
bunch pattern. Next one adds a timing offset, generates
the values for the RAM elements from these bits, and then
sends these array elements to the EPICS control RAM
record that resides in the BSP-100.

The control of the hardware switch bits (i.e., plane and
commutation bit selection) is constrained by the electrical
response of the underlying rf switches, which is of the order
of 100s of nanoseconds. Thus sampling should be turned
off for a short time after a change of switch state. Normally
we switch planes every turn and switch the 0/180 phase
commutation every two turns (as with the old SCDU as
well). Also, one must decide the number of consecutive
samples to use for each isolated bunch. The width of the
sum signal profile indicated that is it six (68 ns).

SOFTWARE DESCRIPTION

Given the complications mentioned above, we used
Tcl/Tk to develop an interactive waveform graphical user
interface (GUI) to view the current control RAM through
EPICS, generate predefined control RAM, and edit the con-
trol RAM. We also needed a way to save and restore RAM
configurations. We approached the project using data and
configuration files as primary objects with toolkit programs
(SDDS Toolkit [3] and SDDS-compliant EPICS Toolkit
[4]) working together to produce the required results. The
data processing actions of the GUI itself consists mostly of
underlying small tools operating on files.

Some of the basic SDDS-compliant EPICS tools used
are: sddswget, which reads values from a list of waveform
PVs and writes the data to files; sddswput, which does the
inverse; sddscasr, which reads a list of waveform and scalar
PVs and writes them to a file, and vice-versa; and sddsgen-
controlbits, which is a special-purpose tool that recognizes
the structure of the control RAM that will be described
later. We created a new SDDS tool, sddsbinarystring, to
convert an unsigned long integer into a binary string of 0’s
and 1’s.

The control RAM of a single BSP-100 is manipulated
with a single instance of the MpBPMWaveformViewer
GUI. Figure 3 shows the GUI for half-sector S38B.

Usually two waveform adjuster displays are visible, the
upper one showing one of the control bit waveforms and
the lower one showing a BPM data scope waveform. In all,
the GUI displays 38 waveforms, which necessitates a tree
of tabs, as shown below:

Display tabs
Scope

BPM number (multiple tabs)
Top: Use this sample, plane, computation channel
Bottom: scope delta signal, scope sum signal,

timing configuration controls with presets
Control RAM

BPM number (multiple tabs)
Top: sample, plane, computation channel
Bottom: scope delta signal, scope sum signal,

timing configuration controls with presets
Common bits in RAM

Top: scope bits
Bottom: RAM bits

Status messages
Action tabs

get waveforms
global timing configuration controls with presets
save waveform
load waveform

The first two display tabs are self-explanatory. The
“Common Bits in RAM” displays the RAM control bits
common to all fours BPMs.

The first action tab is the “Get Waveform PVs” tab, con-
sisting of buttons that cause the BSP-100 to update the
EPICS waveform PVs and to load the waveforms values
in the waveform widgets. One could also load and review
control RAM data that was stored in a file.

The next action tab “Timing configuration controls with
presets” (confusingly called “Read/Set Common Presets”
in the GUI) is the core of the application. For simpli-
fied and realistic user-beam operations, we have decided
to somewhat limit the parameter space of the control RAM
by characterizing the control bits with a few timing config-
uration parameters. Thus new control RAM are generated
based on timing configuration parameter selections, such
as: the plane switching mode, a sampling mode, compu-
tation channel switching mode, and an optional choice of
a bunch pattern from the injection filling pattern database.
The reduction of parameter space allows one to write a tool
such as sddsgencontrolbits to generate the control RAM.
The full list of timing configuration parameters is shown at
the bottom of the GUI in Fig. 3.

For normal APS operation with 24 bunches, the plane
mode would be “x/y every turn”; the sample mode, “Bunch
pattern”; the computation channel switching mode, “0/180
every two turns”; transition dead time, 70 clock cycles; the
string “0+24S Fill from 0 mA” would be typed into the
bunch pattern (this is a valid string value from the filling
pattern database); samples per bunch, 6; turn marker off-
set (i.e., time offset from bucket 0), 199 clock cycles; and
turns per wrap, 4. The resulting control RAM would then
be loaded into the BSP-100.

At the same time the values of the timing configuration
parameters are written to several scalar place-holder PVs.
These PVs can then be displayed in a standard EPICS tool
(i.e., medm) as indicators of what control RAM configura-
tion is currently loaded. When archiving the control RAM,
these scalar PVs must be saved alongside, again to help
later identify the timing configuration.

There is an option of selecting one of many timing con-
figuration parameters sets (“presets” selection box), most
of which have been used in BPM noise studies and normal
operations. There is a button for editing the sets.

The waveform display widgets are editable. One could
in principle edit the control bits before they are assembled

TUP036 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

168



Figure 3: MpBPM Waveform Viewer and Controller for S38B showing the “Use this sample” bit with BPM sum signal.

as control RAM and written to EPICS; so far there hasn’t
been the need in real beam applications. Actually, that
would have been the default mode of setting up the control
RAM if we hadn’t thought of using timing configuration
parameters, and the special tool that goes with it.

The same controls for generating a control RAM is avail-
able on a single BPM basis in one of the tab layers of the
RAM and Scope tab trees.

Action tab “Save” has one button for saving the control
RAM as represented in the edited control bits in an archive.
Action tab “Load” has one button as well, which loads the
edited control bits into EPICS RAM waveform.

When the GUI is launched, the current EPICS RAM and
scope waveform are read and displayed together with the
current scope data and sum signals. The user can gener-
ate a new but related control RAM by selecting a different
bunch filling pattern preset or changing one of the timing
configuration parameter values.

The C program sddsgencontrolbits was written to han-
dle the control RAM words and the separated bits for the
GUI. One usage mode is to read the control RAM PV and
generate a file of control bits; another is to use timing con-
figuration parameters on the command line to generate a
file of control bits and RAM. This tool has also been used
in script-based experiments where one or more aspect of
the acquisition (e.g. time delay) is to be modified in a sys-
tematic way.

Once the desired timing is achieved and loaded into
EPICS along with the timing configuration parameters, all
of these are saved using APS’s configuration archiver Save-
CompareRestore. This GUI allows the user tp restore the
full or partial list of PVs and do comparisons between saved
configurations. One can also design a custom script for
comparing the saved RAM waveforms, though this hasn’t
been done yet, nor has it been necessary. For now, one
compares the timing configuration parameters.

SUMMARY

We presented a GUI that allows the user to set up and vi-
sualize the timing control and data collection of the new
APS storage ring BPM BSP-100 module. It is possible
to make full use of the flexibility of the FPGA-based de-
sign. Other existing control room software provides the
save, compare, and restore functions.

REFERENCES

[1] A. Pietryla et al., Proc. of PAC07, p. 4390 (2007).

[2] W. Norum, private communication.

[3] http://www.aps.anl.gov/Accelerator Systems Division/Op-
erations Analysis/manuals/EPICStoolkit/EPICStoolkit.html

[4] http://www.aps.anl.gov/Accelerator Systems Division/Op-
erations Analysis/manuals/SDDStoolkit/SDDStoolkit.html

Proceedings of ICALEPCS2009, Kobe, Japan TUP036

Operational Tools

169


