
THE BEST EVER ALARM SYSTEM TOOLKIT*

Kay Kasemir, Xihui Chen, Ekaterina Danilova, ORNL, Oak Ridge, TN 37831, U.S.A.

Abstract
Learning from our experience with the Experimental

Physics and Industrial Control System (EPICS) alarm

handler (ALH) as well as a functionally similar approach

based on script-generated operator screens, we developed

the Best Ever Alarm System Toolkit (BEAST). It is based

on Java and Eclipse on the Control System Studio (CSS)

platform, using a relational database (RDB) to store the

configuration and to log actions. It employs the Java

Message Service (JMS) for communication between the

modular pieces of the toolkit, which include an Alarm

Server to maintain the current alarm state, an arbitrary

number of Alarm Client user interfaces (GUI), and tools

to annunciate alarms or log alarm related actions. Web

reports allow us to monitor the alarm system performance

and spot deficiencies in the alarm configuration. The

Alarm Client GUI not only gives the end users various

ways to view alarms in tree and table format, but also

makes it easy to access guidance information, related

operator displays and other CSS tools. It also allows the

alarm configuration to be modified online from the GUI.

Coupled with a good "alarm philosophy" on how to

provide useful alarms, we can finally improve the

configuration to achieve an effective alarm system.

INTRODUCTION

Before the using of the Best Ever Alarm System Toolkit

(BEAST), it was very hard to manage and reduce the

hundreds of alarms daily generated at the Spallation

Neutron Source (SNS), an installation with more than

300000 Process Variables (PVs). The SNS controls group

had tried a number of different approaches to alarm

handling, starting with the EPICS alarm handler (ALH)

[1], a Unix/X11 tool whose layout is fixed to a tree view

of alarms and a legend. The tree view requires several

mouse clicks to reach the actual alarm(s). ALH lacks

ways to handle multiple selected alarms at the same time.

There are no interfaces to other control system tools.

Another attempt was a soft-IOC-based alarm handler [2],

which basically creates EPICS operator displays from

ALH configuration files together with soft-IOCs that

implement the ALH logic. This provided ALH

functionality within the main SNS operator display, but

still required navigation down many levels of subscreens,

each again in a fixed layout, to determine the actual

alarms. In both systems, configuration changes were hard.

Starting with a less than perfect alarm system

configuration, using tools which made it hard to improve

soon led to end user frustration with the alarm system.

The tools presented in this paper not only give end

users various graphical ways to view or handle current

alarms, including access to guidance information on how

to handle a specific alarm, related operator displays or

other control system tools, they also allows us to monitor

the alarm system performance, for example to determine

which alarms trigger most often. Most important they

allow online configuration changes from a graphical user

interface so we can easily improve the configuration. This

is coupled with an overall "philosophy" on how to

provide useful alarms [3].

ARCHITECTURE

Inspired by the DESY alarm management system [4]

and sharing many of the same CSS components [5,6], the

BEAST was designed in a Client/Server architecture with

tools for annunciation, logging and web report generation

(see Fig.1). The modular design improved its flexibility,

stability and reusability significantly at a small sacrifice

of additional work on installation.

Figure 1: The system architecture of BEAST.

At the core of the BEAST is the Alarm Server. It reads

the alarm configuration from the RDB, connects to all the

requested PVs, monitors their state changes and generates

alarms, handling acknowledgement, annunciation,

latching, and some amount of filtering. It allows several

GUI clients to connect simultaneously. The Alarm Server

and Client GUI will be discussed later in detail.

The BEAST uses a relational database to store the

configuration and to log actions. The configuration

includes information for the Alarm Server (what PVs to

monitor, whether to latch or annunciate alarms) as well as

the Alarm Client GUI (user guidance on an alarm, related

display links). The current states of all alarms are also

stored in the configuration database, supporting both

MySQL and Oracle.

JMS, specifically Apache ActiveMQ, is employed for

communication between the modular pieces of the toolkit,

using JMS topics with distinct purposes. The

__

* SNS is managed by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 for the U.S. Department of Energy

TUA001 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

46

ALARM_SERVER topic is used by the Alarm Server to

publish alarm updates and periodic idle message. The

ALARM_CLIENT topic allows client GUIs to notify the

alarm server about alarm acknowledgements and

configuration updates. The TALK topic is dedicated to

annunciation messages.

The tools for annunciation and logging are separate

from the Alarm Server and GUI clients. JMS2Speech

annunciates messages from the TALK topic. JMS2RDB

can listen to all JMS topics, writing received messages to

an RDB message log. They are otherwise generic JMS

clients, independent from the message origin, so both of

them could be reused for other JMS based applications.

Finally, web reports based on Java Server Pages (JSP)

are provided to monitor the alarm system performance

and spot deficiencies in the alarm configuration by

reading and analyzing the data in configuration and

logging databases. They play a very important role in

improving the alarm configuration at the SNS.

ALARM SERVER

The Alarm Server is the central place for maintaining

alarm states based on the configuration from the RDB. It

connects to all requested PVs, monitors the severity of

each PV and then computes the alarm state of PVs based

on the alarm logic configuration for each PV, which

includes enablement, latching, delay, count and a filter

expression. The alarm state can also change via operator

acknowledgement performed on a client GUI.

Figure 2: The alarm state diagram for a latched PV.

When a PV is configured to "latch", the alarm server

remembers the highest alarm severity of the PV until it is

manually acknowledged. For each alarm, it not only

maintains the current alarm severity (Current Severity)

which is directly read from PV, but also the remembered

severity (Severity). "Current severity" might differ from

"Severity" when the underlying alarm PV already

recovered but the alarm server was configured to "latch"

the alarm until operator acknowledgement. Figure 2

shows alarm state transitions in response to various

events.

The “Delay” and “Count” configuration can help to

reduce the amount of “nuisance” alarms from noisy PVs.

By default, the alarm server will react as soon as it notices

a non-OK alarm severity. When adding a delay greater

than zero seconds, it will only react when the alarm

severity remains for at least this time. When an additional

alarm count greater than zero is specified, it will react to

alarms that either outlast the delay, or happen at least

“count” times within the delay. In practice, however, it is

always best to cure alarm noise problems at the source

through adequate dead-bands or smoothing.

A filter expression can automatically enable or disable

alarms based on the value of other PVs, allowing mode-

based alarming, though this is also preferably

implemented on the front-end computer that provides the

alarm PV.

When a PV is configured to “annunciate”, the alarm

server will send the PV's description to the annunciation

system (JMS2Speech) whenever the alarm severity of the

PV rises.

ALARM CLIENT GUI

The Alarm Client GUI is integrated into Control

System Studio (CSS) [5, 6] as three views: Alarm Tree,

Alarm Table and Message History. The Client GUI reads

the initial alarm configuration with guidance messages

and related display links from the RDB. It connects to the

Alarm Server via JMS to read alarm updates and to

submit acknowledge requests or configuration updates. It

shows alarm handling guidance or opens related displays

on user request.

Alarm Table

The alarm table provides a tabular view of currently

active alarms. It only shows alarms that were actually

triggered. It is split into two parts for displaying current

alarms (unacknowledged alarms) and acknowledged

alarms respectively. The alarms can be sorted by any one

of the columns: PV name, Description, Time, Current

Severity, Severity, Status or Value.

From the context menu or toolbar, the user can

acknowledge or un-acknowledge one or multiple selected

alarms in the table.

Alarm Tree

The alarm configuration is hierarchically arranged by

Area, System, optional Subsystems and finally PVs.

Alarm tree components “inherit” the guidance and display

info of their parent items. The Alarm Tree allows access

to this hierarchy in a tree-like structure, which by default

includes all configured alarms, active or not. Optionally,

one can also choose to show only active alarms. Active

alarms can be acknowledged as in the table view.

The alarm state of each tree item is reflected by a

dynamically colored icon and a three-word annotation

(Current PV Severity/Alarm Severity/Alarm Status). The

alarm state of an area or system summarizes the alarm

states of its children.

From the context menu of an alarm tree item one can

easily configure, add, move or remove a component. The

Proceedings of ICALEPCS2009, Kobe, Japan TUA001

Operational Tools

47

Alarm Tree is synchronized with the configuration in

RDB. When a user changes the configuration in an Alarm

Tree, the configuration in the RDB is updated and vice

versa. The configuration update will take effect

immediately on both the Alarm Server and Client GUIs

without a restart. The simplicity of online configuration

modifications make it possible to finally improve the

configuration to provide useful alarms and have guidance

for every alarm based on a good alarm “philosophy” [3].

Message History

The message history is a generic tabular browser for the

CSS message log. It reads logging data from the message

RDB upon requests. In the BEAST, it is used to view the

history of alarms and actions.

Interoperability

From the context menu of items in the Alarm Table or

Tree it is easy to access guidance information, related

operator displays and web pages, an electronic logbook or

other CSS tools such as Probe, Data Browser, EPICS PV

Tree etc. The guidance information of a PV can instruct

operators on how to deal with an alarm. Related operator

displays and web pages can help to diagnose the problem

or perform corresponding operations. Operators can also

submit information about an alarm event with comments

to an electronic logbook. This integration with other CSS

tools is one of the inherent advantages of the CSS

framework. It helps users to access other PV-related tools

simply from the context menu of an alarm. Figure 3

shows the three steps to plot archived data for an alarm

PV in the Data Browser.

Figure 3: Interoperability with other CSS tools

Security

The CSS authentication and authorization strategy was

applied to BEAST to restrict privileges for alarm

acknowledgement and configuration updates. Only

authorized users are able to login and perform protected

operations. An LDAP server is used to maintain

information on users and their privileges.

WEB REPORTS

Web reports (Fig.4) utilize alarm data automatically

saved in the RDB with JSP running on Tomcat

technology. Dynamically created charts and tables are

based on user choice of time period, PV name or pattern,

and severity or current severity. The reports are accessed

either immediately, through one button click, or through

interactive charts. The charts present alarm statistics, and

allow users to drill down for more information, as from a

“Totals per Day” chart to a chart showing the “Top” 10

PVs with the highest number of alarms with cumulative

percentages, to detail reports which contain not only

statistics on minimum, maximum, average, most frequent

and extreme alarm durations, alarms by severity, and 10

minute slices on a time line chart, but also detailed

information about every alarm state change.

Figure 4: Web Reports.

SUMMARY

The BEAST has been operational at the SNS since

February 2009. It has been stable through IOC reboots,

online configuration changes and Oracle updates. It is

very helpful in improving the configuration. Starting by

importing a previous ALH setup of about 300 PVs with

no guidance and few related displays, the configuration

now has 400 PVs and all of them have guidance, related

displays or links to operational procedures. The Alarm

Client GUI indeed received the “best ever” praise from

SNS operators.

REFERENCES

[1] http://www.aps.anl.gov/epics/extensions/alh.

[2] P.Gurd et al, “The New Soft-IOC-Based Alarm

Handler at the Spallation Neutron Source”,

ICALEPCS07, Knoxville, October 2007.

[3] Karen White, Kay Kasemir, “Alarms Philosophy”,

ICALEPCS09, Kobe Japan, October 2009.

[4] M.Clausen, “Alarm Management System”, PCaPAC,

Ljubljana, Slovenia, Oct. 2008.

[5] DESY CSS web page: http://css.desy.de

[6] SNS CSS web page: http://ics-web.sns.ornl.gov/css

.

TUA001 Proceedings of ICALEPCS2009, Kobe, Japan

Operational Tools

48

