
AIDA, AN ARCHITECTURE FOR DISTRIBUTED ACCELERATOR DATA
AT SLAC

G. White, S. Chevtsov, C. P. Chu, D. Fairley, E. Grunhaus, R. Hall, P. Krejcik, G. McIntyre,
D. Rogind, R. Sass, H. Shoaee, M. Zelazny, SLAC, Menlo Park, California, U.S.A

Abstract

Rapid development of scientific software applications
for a large instrument like an accelerator, in an established
and evolving environment, is made difficult by the diver-
sity of interfaces, protocols, and hosts, of the source data.
Additionally, analytical applications deal mainly with com-
plex data structures, such as synchronized beam data for
a whole beamline, rather than individual control points.
AIDA (Accelerator Integrated Data Access) is a distributed
3-tier system that allows Matlab, Java programs, or scripts,
to interoperate with EPICS Channel Access, legacy control
systems, relational databases such as Oracle, accelerator
modelling systems, EPICS and SLC Archivers, and other
data servers, in ways oriented to scientific users. It also in-
cludes a Google-like web interface for search and plots. At
SLAC, AIDA provides a uniform, fast, interface to 4.5 mil-
lion named elements in 14 lower level systems, over two
control systems, for about 70 utilities and 20 large scien-
tific applications. This approach was found to be key to
the rapid commissioning of LCLS at SLAC. We present
the first public description of the developed AIDA system
since its early thinking at ICALEPCS 2001.

INTRODUCTION

AIDA is a complete, fast and robust system for help-
ing physicists and programmers interface to controls and
scientific data systems. It can get or set simple EPICS
Process Variable (PV) data [1] (floats, waveforms etc), or
complex ”structured” data like archived values with times-
tamps, model parameters like transfer matrices, Oracle DB
query result tables, Beam Position Monitor beamline or-
bit data, synchronized magnet control etc, in the speed
required for online scientific applications. However, al-
though the data may be complex, the application program-
ing interface (API) is very simple, using a java-bean like
”get” and ”set” programming model, of named data items
like EPICS PVs, plus name=value pair parameters. This
makes AIDA also popular among SLAC scientists for of-
fline diagnostics and analysis, since its easy to use from
Matlab.

Typically the server side had to do some significant pro-
cessing to compile that data before returning it. An AIDA
network is implemented in CORBA, with Java client API
and Java and C thin-server sides. It includes an authoriza-
tion scheme for controlling access, and complete error mes-
saging and logging.

The use cases, programming examples, and architecture,
of AIDA are described.

Primary Use Case Model

Aida processes between 35000 and 120000 unique
queries per day of normal machine operation, and knows
4.5 M named entities across 2 control systems. Its use is
split primarily between production quality matlab applica-
tions for commissioning applications, and high level Java
applications intended for long term controls and optimiza-
tion, such as configuration (in the SLAC version of EPICS
SCORE, in accelerator model applications, beam energy
management and diagnostics etc).

For LCLS commissioning, the control system was a hy-
brid of the legacy SLC control system (Fortran and C on
VMS hosts and RMX front ends), and a new EPICS con-
trol system being phased in (which is based on Linux and
Rtems).

Since AIDA knows all of the controls, archiver systems,
model, and backend databases of both of these systems, and
has a simple Java API which is easy to use from Matlab, it
was the central point for rapid commissioning of LCLS.

DATA SOURCES

There are presently 23 production data sources with
which an AIDA client my interact. The primary ones are:

∙ EPICS Channel Access. Get and Set is supported,
but not monitor. Monitor is presently not considered
worth it for the primary use cases, which are applica-
tions oriented as opposed to controls displays, feed-
back etc

∙ EPICS Archiver
∙ Legacy SLC controls database. This database acts ac-

tually like a memory system, so setting the database is
like setting the device values in the field

∙ SLC Archiver
∙ XAL Accelerator Model data
∙ DIMAD Accelerator Model data
∙ Oracle Relational Database. This AIDA server can

issue canned SQL queries (including parameter sub-
stitution), so it acts as a trivial way for applications to
get data from Oracle in a well managed robust oracle
connection.

∙ Timing synchronized BPM Orbit data
∙ Timing synchronized magnet control
∙ RF data and control

Note that there are cases of 2 data sources for a single
data type, such as XAL and DIMAD modelling. In these
cases, AIDA presents the same syntactical interface with
the same options, so the user largely doesn’t have to know
the source. Basic semantics are kept uniform too.

Proceedings of ICALEPCS2009, Kobe, Japan THP020

Control System Evolution

715



Figure 1: Schematic of an AIDA Network. For clarity, only a single data server is shown, but in a real AIDA network
there will be many of these. The AIDA components are shown as thin boxes. The server side shows a thin AIDA front
end to a data server, which may itself interface to back end data systems such as IOCs.

Figure 2: The picture shows the Aida Directory Service Database schema entity-relationship diagram (ERD). The table
AIDA NAMES contains the entity names (instance and attribute columns, akin to EPICS PV and field), and the transform
(metadata that describes, if necessary, what string to ask the data provider to get the entity named). The other tables
describe which server or servers are involved in each entity, and CORBA metadata.

THP020 Proceedings of ICALEPCS2009, Kobe, Japan

Control System Evolution

716



ARCHITECTURE

AIDA is a 3-tier service oriented architecture; the client
side with the API, a middle tier of 2 Aida system servers,
and the backend controls and data servers themselves (see
Fig. 1). The middle tier is comprised of an AIDA Name
and Directory Service (see below), which keeps track of
all the named data entities in the AIDA network, and a so
called ”Da” Server, which mediates all requests for data.

An AIDA network is implemented in CORBA. The Di-
rectory Service and Da Server implement special APIs, but
all data servers implement a single IDL (Interface Defini-
tion Language) defined protocol. In this way, servers can
be brought up very quickly, and all data communications
are uniform and easily learned. Presently, there are 23 real
production data servers, and 4 test servers, giving 21+2+4
= 27. There is also a mirror system of 27 servers in an
orthogonal development application level network, so 54
servers in total. In each network, 19 of the servers are Unix
based (in 3 hosts), and 8 are VMS (in 1 host).

Everything Aida knows, that is, the name of each data
entity (akin to a PV) and how to get or set it, is in AIDA’s
Directory Service, whose database is implemented in Ora-
cle (see Fig. 2). The data entity names in the Aida Direc-
tory service are automatically added or removed by batch
processes that monitor the contributing data systems and
update the directory service as changes occur in those data
systems. Names can also be added or removed by hand.
This makes AIDA very useful for tracking such things as
EPICS PVs, since it knows all PVs, and can get the name
or value of any subset according to a regular expression.

PERFORMANCE

AIDA was designed to get simple data fast, but incorpo-
rate facilities for getting structured, typed data too. It was
considered appropriate that such heterogenous data, such
as the transfer matrices for a whole beamline, would be
allowed to take longer, since it is typically required by sci-
entific analysis rather than controls per se. AIDA achieves
a basic round trip of ¡2ms for a single simple type (Fig 3),
and median 3 ms for dynamically serialized structured data
(Fig 4).

Figure 3: AIDA performance measurements of 900 acqui-
sitions of a double value. Large excursions are repeated
at the same point in successive tries (not shown), so are
attributable to systematics of the measurement, probably
garbage collection.

Figure 4: Performance of 900 acquisitions of structured
data of 15 history data points (a small amount of his-
tory shown so as measurement is not dominated by the
server’s acquisition, but by the serialization/deserialization
across the AIDA network). This shows that a 8 millisecond
roundtrip can be expected for a first acquisition, but many
acquisitions (of different values) will settle on 3 ms, due to
caching, code path and Java VM warmup.

CONCLUSIONS AND PLANS

A uniform, fast, programming and Matlab scripting in-
terface to all process variables and data in the hybrid con-
trol systems at SLAC, proved key to rapid commissioning
applications development for the LCLS. This unified ap-
proach allows data and control component systems to be
added or removed, without greatly affecting high level ap-
plications and analytical code. Plans for the long term
future of AIDA are being formally prepared, and include
creating 2 production level AIDA networks, one for office
based analytics with open access, and one high availability
network specifically for controls. More information can be
found at [2].

REFERENCES

[1] R. Dalesio et al, EPICS,
http://www.aps.anl.gov/epics/.

[2] G. White, et al,
http://www.slac.stanford.edu/grp/cd/soft/aida/

Proceedings of ICALEPCS2009, Kobe, Japan THP020

Control System Evolution

717


